scholarly journals Measurement of Heat Release Rate by Carbon Dioxide Generation Method for Methane Fire

2020 ◽  
Vol 34 (2) ◽  
pp. 1-6
Author(s):  
Sung-Chan Kim

The energy released by various burning material has a wide range of its magnitude and transient characteristics, the measurement of the heat release rate(HRR) has been considered as one of the most challenging issue among the parameters related to fire. This study compares the measured HRR calculated by the oxygen consumption (OC) method and the carbon dioxide generation (CDG) method using a laboratory-scale fire calorimeter. The feasibility of the CDG method is examined by analyzing the relative error. The relationship between the oxygen depletion factor and CO<sub>2</sub> mass flow rate, which is a key parameter in HRR calculations, showed strong linearity at 6 % for the methane burner fire. The contribution of HRR by CO was less than 7% compared with the of HRR by CO<sub>2</sub> in the CDG calculation method. The linearity of the OC and CDG methods with respect to HRR of the referenced methane burner in a quasi-steady state was less than 1%; this indicates that the CDG method can be utilized as a complementary method in heat release rate measurement.

2019 ◽  
Vol 43 (3) ◽  
pp. 256-265 ◽  
Author(s):  
Ying Zhang ◽  
Kaixuan Tang ◽  
Hong Duan ◽  
Yi Niu ◽  
Xianjia Huang ◽  
...  

Author(s):  
Qiang Xu ◽  
G. J. Griffin ◽  
XuHong Miao ◽  
ZhenYu Xu ◽  
Y. Jiang

Tests were conducted with ISO 9705 room to investigate the combustion behavior of medium size wood cribs. Cribs were burnt at the center and corner inside ISO room and also under the hood of the ISO room. Effective heat of combustion and increase rate of heat release rate in growth phase is compared for cribs with different nominal heat release rate and in different positions. The relationship between scaled steady mass loss rate and porosity factor of wood crib is quite different from those in literatures. The average effect heat of combustion is 12.18 MJ kg−1, which is close to commonly accepted value 12 MJ kg−1 for wood sample burning with diffusion flame.


2017 ◽  
Vol 6 (2) ◽  
pp. 58
Author(s):  
Selçuk Keçel

This study examines the relationship between temperature, CO dispersions, symptoms, and COHb% levels accumulated in the blood on available ventilation conditions in cases of fire at point in an underground mine model. Based on operating parameters (air velocity and direction) of the ventilation system in the underground mine model, fast growing phase fire analyses were conducted according to the heat release rate (HRR) value in the range of 0-61.34MW. In fire scenarios prepared according to the hydrocarbon fuel type (C2.3H4.2O1.3), boundary conditions were calculated depending on the combustion equation considering fuel lower heating value (Qc). CO dispersions inside the tunnel were examined by transferring the time-dependent boundary conditions to the computational fluid dynamics (CFD) program.  yCO, COHb%, and COHb%/∆t changes were calculated according to the HRR value.  Findings regarding the effects of CO emission (acute and chronic poisoning), were expressed according to the HRR value. Keywords Combustion Model Design, Heat Release Rate (HRR), Carbon Monoxide emission, Symptoms and Survival Time, Computational Fluid Dynamics (CFD);


2021 ◽  
pp. 146808742110469
Author(s):  
Jeremy Rochussen ◽  
Gordon McTaggart-Cowan ◽  
Patrick Kirchen

Natural gas (NG) is an attractive fuel for heavy-duty internal combustion engines because of its potential for reduced CO2, particulate, and NOX emissions and lower cost of ownership. Pilot-ignited direct-injected NG (PIDING) combustion uses a small pilot injection of diesel to ignite a main direct injection of NG. Recent studies have demonstrated that increased NG premixing is a viable strategy to increase PIDING indicated efficiency and further reduce particulate and CO emissions while maintaining low CH4 emissions. However, it is unclear how the combustion strategies relate to one another, or where they fit within the continuum of NG stratification. The objective of this work is to present a systematic evaluation of pilot combustion, NG combustion, and emissions behavior of stratified-premixed PIDING combustion modes that span from fully-premixed to non-premixed conditions. A sweep of the relative injection timing, [Formula: see text], of NG and pilot diesel was performed in a heavy-duty PIDING engine with [Formula: see text] = 140–220 bar, [Formula: see text] = 0.47–0.71, and a constant NG energy fraction of 94%. Apparent heat release rate and emissions analyses identified interactions between the pilot fuel and NG, and qualitatively characterized the impact of NG stratification on combustion and emissions. Changes in the [Formula: see text] resulted in six distinct PIDING combustion regimes, for all considered injection pressures and equivalence ratios: (i) RIT-insensitive premixed, (ii) stratified-premixed (early-cycle injection), (iii) NG jet impingement transition, (iv) stratified-premixed (late-cycle injection), (v) variable premixed fraction, and (vi) minimally-premixed. Parametric definitions for the bounds of each regime of combustion were valid for the wide range of [Formula: see text] and [Formula: see text] investigated, and are expected to be relevant for other PIDING engines, as previously identified regimes agree with those identified here. This conceptual framework encompasses and validates the findings of previous stratified PIDING investigations, including optimal ranges of operation that provide significantly increased efficiency and lower emissions of incomplete combustion products.


2020 ◽  
Vol 1 ◽  
pp. 14-20
Author(s):  
Michael Horváthová ◽  
Linda Makovická Osvaldová

This paper examines three types of natural insulation materials, such as fiberboard, hemp and straw, from the point of view of fire safety. Cellulose-based materials allow a wide range of applications when used for insulation and weatherproofing of buildings, in particular floors, roofs, ceilings, attics, sound barriers, etc. The use of these materials is increasing in ecological constructions as well as for weatherproofing wood-based structures. In terms of fire safety requirements, the question is: Which insulating material is the safest in terms of fire propagation? The article focuses on natural products used as external insulation systems which are covered by a facade plaster. Each type of insulation is briefly described in terms of its composition, use, and production process. We describe the process of preparation of samples as well as the testing and measurement procedures. Three tests were carried out for each type of material. For a more objective evaluation, results were averaged. The results of the cone calorimeter were used to obtain data for comparison. The aim is to clarify the behavior of the natural insulating material with regard to the heat release rate, ignition time, burning duration, and maximum heat release rate. These are the essential parameters for comparison. The values were compared to determine the safest material from the point of view of fire safety.


1998 ◽  
Vol 132 (1-6) ◽  
pp. 365-389 ◽  
Author(s):  
Y. HE ◽  
I. MOORE ◽  
M. LUO ◽  
V. BECK

Sign in / Sign up

Export Citation Format

Share Document