JAPANESE GOVERNMENTAL AND INDUSTRIAL MEASURES FOR THE CONTROL OF MARINE OIL SPILLS

1979 ◽  
Vol 1979 (1) ◽  
pp. 261-267
Author(s):  
Chikao Funatani

ABSTRACT Development of an effective oil spill control system in Japan was spurred by two marine disasters in 1974 which brought about an organizational and physical reinforcement of the nation's capability to respond to oil spills. This paper describes today's legal structure for oil spill control, the organizational concepts used at various levels to provide joint efforts by government agencies and industry, the role of the Marine Disaster Prevention Center which serves as the nucleus of the necessary control operations, and research and development highlights of ongoing Japanese efforts to prevent, control, and clean up oil spills.

2019 ◽  
Vol 7 (7) ◽  
pp. 214 ◽  
Author(s):  
Song Li ◽  
Manel Grifoll ◽  
Miquel Estrada ◽  
Pengjun Zheng ◽  
Hongxiang Feng

Many governments have been strengthening the construction of hardware facilities and equipment to prevent and control marine oil spills. However, in order to deal with large-scale marine oil spills more efficiently, emergency materials dispatching algorithm still needs further optimization. The present study presents a methodology for emergency materials dispatching optimization based on four steps, combined with the construction of Chinese oil spill response capacity. First, the present emergency response procedure for large-scale marine oil spills should be analyzed. Second, in accordance with different grade accidents, the demands of all kinds of emergency materials are replaced by an equivalent volume that can unify the units. Third, constraint conditions of the emergency materials dispatching optimization model should be presented, and the objective function of the model should be postulated with the purpose of minimizing the largest sailing time of all oil spill emergency disposal vessels, and the difference in sailing time among vessels that belong to the same emergency materials collection and distribution point. Finally, the present study applies a toolbox and optimization solver to optimize the emergency materials dispatching problem. A calculation example is presented, highlighting the sensibility of the results at different grades of oil spills. The present research would be helpful for emergency managers in tackling an efficient materials dispatching scheme, while considering the integrated emergency response procedure.


Author(s):  
Elise G. DeCola ◽  
Andrew Dumbrille ◽  
Steve Diggon

ABSTRACT Indigenous communities often bear disproportionate risks from marine oil spills because of their close connections to and reliance on marine ecosystems. The impacts of an oil spill on Indigenous people and communities can be far-reaching, even for incidents that might be considered “small” from the perspective of the response community. Building community capacity for oil spill preparedness and response is a critical component to creating resilience within Indigenous communities. While the fundamental elements of capacity are the same for Indigenous communities as for any other coastal community, the approach requires an understanding and respect for Traditional Knowledge, Indigenous governance structures, and existing stewardship networks. Oil spill preparedness and response traditionally follows a top-down approach within both government and industry, because marine oil spills are low frequency, high consequence, highly complex incidents where multiple organizations and jurisdictions must work together. While this reality applies regardless of whether an oil spill impacts Indigenous communities, a top-down approach can be experienced as a threat to self-governance and compromise the effectiveness of capacity-building efforts. There is a significant body of research in support of the concept that resilience to emergencies and disasters among Indigenous people must build upon existing social, cultural, and familial structures in order to be effective. This requires a fundamentally different approach that builds from the ground up with the goal of ultimately meshing with the existing preparedness and response framework. Peer-to-peer learning and knowledge transfer is an approach that has been used in support of a range of initiatives among Indigenous communities, such as human health initiatives. The same approach may provide a mechanism to empower Indigenous communities to enhance both capacity and resilience. This paper presents a case study from ongoing work to connect Indigenous communities from Canada's High Arctic and Pacific Coast in support of marine oil spill preparedness and response.


2021 ◽  
Vol 14 (1) ◽  
pp. 157
Author(s):  
Zongchen Jiang ◽  
Jie Zhang ◽  
Yi Ma ◽  
Xingpeng Mao

Marine oil spills can damage marine ecosystems, economic development, and human health. It is important to accurately identify the type of oil spills and detect the thickness of oil films on the sea surface to obtain the amount of oil spill for on-site emergency responses and scientific decision-making. Optical remote sensing is an important method for marine oil-spill detection and identification. In this study, hyperspectral images of five types of oil spills were obtained using unmanned aerial vehicles (UAV). To address the poor spectral separability between different types of light oils and weak spectral differences in heavy oils with different thicknesses, we propose the adaptive long-term moment estimation (ALTME) optimizer, which cumulatively learns the spectral characteristics and then builds a marine oil-spill detection model based on a one-dimensional convolutional neural network. The results of the detection experiment show that the ALTME optimizer can store in memory multiple batches of long-term oil-spill spectral information, accurately identify the type of oil spills, and detect different thicknesses of oil films. The overall detection accuracy is larger than 98.09%, and the Kappa coefficient is larger than 0.970. The F1-score for the recognition of light-oil types is larger than 0.971, and the F1-score for detecting films of heavy oils with different film thicknesses is larger than 0.980. The proposed optimizer also performs well on a public hyperspectral dataset. We further carried out a feasibility study on oil-spill detection using UAV thermal infrared remote sensing technology, and the results show its potential for oil-spill detection in strong sunlight.


2021 ◽  
Vol 13 (16) ◽  
pp. 3174
Author(s):  
Yonglei Fan ◽  
Xiaoping Rui ◽  
Guangyuan Zhang ◽  
Tian Yu ◽  
Xijie Xu ◽  
...  

The frequency of marine oil spills has increased in recent years. The growing exploitation of marine oil and continuous increase in marine crude oil transportation has caused tremendous damage to the marine ecological environment. Using synthetic aperture radar (SAR) images to monitor marine oil spills can help control the spread of oil spill pollution over time and reduce the economic losses and environmental pollution caused by such spills. However, it is a significant challenge to distinguish between oil-spilled areas and oil-spill-like in SAR images. Semantic segmentation models based on deep learning have been used in this field to address this issue. In addition, this study is dedicated to improving the accuracy of the U-Shape Network (UNet) model in identifying oil spill areas and oil-spill-like areas and alleviating the overfitting problem of the model; a feature merge network (FMNet) is proposed for image segmentation. The global features of SAR image, which are high-frequency component in the frequency domain and represents the boundary between categories, are obtained by a threshold segmentation method. This can weaken the impact of spot noise in SAR image. Then high-dimensional features are extracted from the threshold segmentation results using convolution operation. These features are superimposed with to the down sampling and combined with the high-dimensional features of original image. The proposed model obtains more features, which allows the model to make more accurate decisions. The overall accuracy of the proposed method increased by 1.82% and reached 61.90% compared with the UNet. The recognition accuracy of oil spill areas and oil-spill-like areas increased by approximately 3% and reached 56.33%. The method proposed in this paper not only improves the recognition accuracy of the original model, but also alleviates the overfitting problem of the original model and provides a more effective monitoring method for marine oil spill monitoring. More importantly, the proposed method provides a design principle that opens up new development ideas for the optimization of other deep learning network models.


2021 ◽  
Author(s):  
Celia Fan

Electrical transformer stations use transformer oil to increase the efficiency of the electrical voltage transfer and to reduce the moisture and air in an electrical transformer. Each year, there is a high probability of spilling the transformer oil accidentally into the environment. Some spill events contain large volume of transformer oil. The objective of this thesis is to investigate oil spill control systems for spilled transformer oil during all operating and weathering conditions at a Hydro One's transformer station near the city of Burlington. This thesis examines the design of (1) oil trap systems which trap the spilled transformer oil and (2) the oil back-up systems thick back up the transformer oil spills to the transformer station. This research focuses primarily on Hydro One's transformer stations and the normal operation conditions in Ontario.


1990 ◽  
Vol 30 (1) ◽  
pp. 413
Author(s):  
C. Jones ◽  
J. P. Hartley

The BP Exploration approach to oil spill control can be summed up as prevention and preparedness. In all cases our primary objective is to prevent oil spills occurring. However despite careful attention to plant design, staff training, auditing etc., oil may sometimes be spilled.For any operation, effective oil spill ontingency planning depends on having a sound understanding of the local ecological and environmental sensitivities, physical conditions and the nature, size and risks of potential spills. This information allows the definition of response strategy and appropriate resource levels (equipment and personnel). However the mere provision of resources is insufficient; equipment maintenance, staff training, oil spill exercises (planned and unannounced), agreement of responsibilities with external authorities and periodic reviews are regarded as essential to ensure adequacy of response.The implementation of these principles is demonstrated using the development and continued evolution of the oil spill plan for Sullom Voe, a major North Sea oil terminal handling ca 1 million barrels of crude per day. Changes have been made to the plan to take account of technological advances and the lessons learned from actual spills in Sullom Voe, Port Valdez and elsewhere.Oil spill contingency arrangements for onshore and nearshore exploration drilling are also considered, illustrated with recent English (on and offshore Wytch Farm) and Scottish west coast examples. The principles adopted for spill planning at oil terminals have been found to apply equally to E & P operations in sensitive areas.The paper concludes with a brief comparison of the relative costs of efforts to prevent spills with the costs of spill cleanup and damages.


2010 ◽  
Vol 67 (6) ◽  
pp. 1105-1118 ◽  
Author(s):  
C. Martínez-Gómez ◽  
A. D. Vethaak ◽  
K. Hylland ◽  
T. Burgeot ◽  
A. Köhler ◽  
...  

Abstract Martínez-Gómez, C., Vethaak, A. D., Hylland, K., Burgeot, T., Köhler, A., Lyons, B. P., Thain, J., Gubbins, M. J., and Davies, I. M. 2010. A guide to toxicity assessment and monitoring effects at lower levels of biological organization following marine oil spills in European waters. – ICES Journal of Marine Science, 67: 1105–1118. The usefulness of applying biological-effects techniques (bioassays and biomarkers) as tools to assist in evaluating damage to the health of marine ecosystems produced by oil spills has been demonstrated clearly during recent decades. Guidelines are provided for the use of biological-effects techniques in oil spill pollution monitoring for the NE Atlantic coasts and the NW Mediterranean Sea. The emphasis is on fish and invertebrates and on methods at lower levels of organization (in vitro, suborganismal, and individual). Guidance is provided to researchers and environmental managers on: hazard identification of the fuel oil released; selection of appropriate bioassays and biomarkers for environmental risk assessment; selection of sentinel species; the design of spatial and temporal surveys; and the control of potential confounding factors in the sampling and interpretation of biological-effects data. It is proposed that after an oil spill incident, a monitoring programme using integrated chemical and biological techniques be initiated as soon as possible for ecological risk assessment, pollution control, and monitoring the efficacy of remediation. This can be done by developing new biomonitoring programmes or by adding appropriate biological-effects methods to the existing monitoring programmes.


1979 ◽  
Vol 1979 (1) ◽  
pp. 225-227 ◽  
Author(s):  
Donald A. Alberts

ABSTRACT A number of oil companies operating in the Caribbean have formed the Clean Caribbean Cooperative (CCC) with the objective of enhancing the capability to promptly and efficiently respond to oil spills which cause, or threaten to cause, pollution damage to beaches, harbors, offshore islands, and waters of the Caribbean. CCC resources are available to respond to spills within the area bounded by the coasts of Central America, South America, and Panama. These resources are designed to be used in remote areas where little or no response capability is in place, as well as to supplement the present capability in certain other areas. CCC member companies agreed to share the costs of providing a source of materials, equipment, and services to be used in responding to an oil spill incident. Use of the equipment, as well as management of the total response effort, is the responsibility of the company or agency which is taking action to control the spill. The CCC as an organized unit does not engage in joint or collective action in transporting or operating the facilities, arranging for personnel, providing management, or in any way becoming part of the on-scene control activity at the spill site. Because of the large area of the Caribbean, surface transportation cannot be relied on totally to bring resources to a spill at a great distance from locations where the oil industry and other agencies have oil spill cleanup capability in place. Therefore, the CCC leased a select stockpile of equipment which is kept in readiness for prompt dispatch by air. Because of the great variation in conditions surrounding an oil spill, control measures cannot be expected to be 100% effective in preventing any damage. However, by rapidly initiating action under a preplanned response system, the ability to avoid or substantially mitigate the effects of an oil spill is greatly enhanced.


1979 ◽  
Vol 1979 (1) ◽  
pp. 685-692
Author(s):  
Peter C. Cornillon ◽  
Malcolm L. Spaulding ◽  
Kurt Hansen

ABSTRACT As part of a larger project assessing the environmental impact of treated versus untreated oil spills, a fates model has been developed which tracks both the surface and subsurface oil. The approach used to spread, drift, and evaporate the surface slick is similar to that in most other oil spill models. The subsurface technique, however, makes use of a modified particle-in-cell method which diffuses and advects individual oil/dispersant droplets representative of a large number of similar droplets. This scheme predicts the time-dependent oil concentration distribution in the water column, which can then be employed as input to a fisheries population model. In addition to determining the fate of the untreated spill, the model also allows for chemical treatment and/or mechanical cleanup of the spilled oil. With this capability, the effectiveness of different oil spill control and removal strategies can be quantified. The model has been applied to simulate a 34,840 metric ton spill of a No. 2-type oil on Georges Bank. The concentration of oil in the water column and the surface slick trajectory are predicted as a function of time for chemically treated and untreated spills occurring in April and December. In each case, the impact on the cod fishery was determined and is described in detail in a paper by Reed and Spaulding presented at this conference.


Sign in / Sign up

Export Citation Format

Share Document