Sweden Seeking New Technology to Combat Oil Spills

1991 ◽  
Vol 1991 (1) ◽  
pp. 667-671
Author(s):  
Bernt Jansson ◽  
Jarl Johansson

ABSTRACT Due to the special circumstances of the Baltic Sea—brackish water, low temperatures, ice, and widespread archipelagos—special oil spill response and cleanup methods and equipment have proven to be necessary. The Swedish Government therefore commissioned the Swedish National Board of Technical Development to establish a research and development program involving the six authorities that are responsible for the country's environmental protection. The first step in this program was a common document, Policy Guidelines for Swedish Maritime Oil Spill Protection in the 1990s, with high-priority strategies according to which all subsequent development has been carried out. The program has produced methods and systems ranging from those for handling oil spills at sea and from leaking wrecks, to protection against and deflection of oil from sensitive areas, and cleanup operations in the beach zone.

2021 ◽  
Vol 13 (12) ◽  
pp. 6585
Author(s):  
Mihhail Fetissov ◽  
Robert Aps ◽  
Floris Goerlandt ◽  
Holger Jänes ◽  
Jonne Kotta ◽  
...  

The Baltic Sea is a unique and sensitive brackish-water ecosystem vulnerable to damage from shipping activities. Despite high levels of maritime safety in the area, there is a continued risk of oil spills and associated harmful environmental impacts. Achieving common situational awareness between oil spill response decision makers and other actors, such as merchant vessel and Vessel Traffic Service center operators, is an important step to minimizing detrimental effects. This paper presents the Next-Generation Smart Response Web (NG-SRW), a web-based application to aid decision making concerning oil spill response. This tool aims to provide, dynamically and interactively, relevant information on oil spills. By integrating the analysis and visualization of dynamic spill features with the sensitivity of environmental elements and value of human uses, the benefits of potential response actions can be compared, helping to develop an appropriate response strategy. The oil spill process simulation enables the response authorities to judge better the complexity and dynamic behavior of the systems and processes behind the potential environmental impact assessment and thereby better control the oil combat action.


2003 ◽  
Vol 2003 (1) ◽  
pp. 1279-1284
Author(s):  
Tharald M. Brekne ◽  
Sigmund Holmemo ◽  
Geir M. Skeie

ABSTRACT There is an increasing focus on offshore combat of oil spills on the Norwegian Continental Shelf (NCS). One result of this focus is a change from field specific to area specific contingency, moving from many medium sized oil spill combat vessels, to fewer and more robust systems and vessels. An important element in the emerging configuration is the use of helicopter based chemical dispersant systems, permanently located on offshore installations. An increasing diversity, of oil types being produced, configuration of installations, water depths and geographic location, are all factors that require a robust, mobile and flexible oil spill response. The Norwegian Clean Seas Association for Operating Companies (NOFO) has recently initiated development of new technology, as projects under NOFO's Research & Development Programme. Three of these projects address the development of improved heavy offshore booms, applying new principles for containment of oil, and a heavy duty skimmer optimized for mobility. A fourth project addresses the development of a system for helicopter based application of chemical dispersants, optimized for offshore storage and maintenance. This paper presents the status for and experience from these projects, as well as the plan for testing and verification of this new technology.


Baltica ◽  
2014 ◽  
Vol 27 (special) ◽  
pp. 15-22 ◽  
Author(s):  
Alexander Kileso ◽  
Boris Chubarenko ◽  
Petras Zemlys ◽  
Igor Kuzmenko

The state-of-art in oil spill modelling methods is summarized, focusing on development since 2000. Some recommendations for possible application of these methods to the south–eastern part of the Baltic Sea are prepared. Particular attention is paid on the methods of parameterization of volume of oil spill and calculation of advection of the oil spills. Consideration is also given to methods used in oil weathering models.


1993 ◽  
Vol 1993 (1) ◽  
pp. 605-609
Author(s):  
Timo Knuutila ◽  
Erkki Mykkänen ◽  
Niels Vase

ABSTRACT Finland's National Board of Waters and the Environment (FNBWE) and the Finnish electronics company Jertec Oy have together developed a computer-based oil recovery system to improve the efficiency of oil recovery operations in the Baltic Sea. The Baltic Sea is extremely vulnerable to oil spills, largely because at high latitudes there are only a few hours of daylight during winter. Integration of the ship's navigational equipment with a highly accurate positioning system such as the differential GPS makes it possible to operate 24 hours a day. Also, oil recovery can be made much more efficient by using a new technique to collect oil from a wider area than at present. The oil recovery vessel Halli has a length of 60 meters and is capable of recovering oil either alone or with two assisting vessels. In the latter case, the assisting vessels draw oil booms to direct floating oil from a wide area into the Halli rather like a funnel. Previously, this operation was limited to straight runs and daylight hours. The Halli is also equipped to perform underwater investigations (such as seabed wrecks) with a small submersible. Without an underwater positioning and tracking system, underwater operations are inefficient. The main requirements for the new system were reliable positioning of all vessels (assisting vessels are not known in advance), reliable inter-vessel communication, and documentation and printouts of the planned and real routes. The new navigation system was installed in November 1991 and has since fulfilled all FNBWE's requirements. The main benefit is the capability to operate 24 hours a day, which greatly increases the efficiency of oil recovery.


2021 ◽  
Vol 13 (17) ◽  
pp. 9889
Author(s):  
Fokke Saathoff ◽  
Marcus Siewert ◽  
Marcin Przywarty ◽  
Mateusz Bilewski ◽  
Bartosz Muczyński ◽  
...  

This paper presents the methodology, assumptions, and functionalities of an application developed during the realization of the project “South Baltic Oil Spill Response through Clean-up with Biogenic Oil Binders” (SBOIL). The SBOIL project is a continuation of the BioBind project, the primary goal of which was to develop and deploy an oil recovery system designed for use in coastal waters and adverse weather conditions. The goal of the SBOIL project was to use this new technology to improve the current response capabilities for cross-border oil spills. The developed application allows for the determination of the position of an aircraft at the time of dropping the oil binders, the determination of the oil binders’ position after falling in terms of a specific aircraft’s position, the determination of the position of oil binders after a certain time in order to plan the action of recovering it from the water surface, and the determination of the time when the binders will be in their assumed position.


Baltica ◽  
2014 ◽  
Vol 27 (special) ◽  
pp. 3-8 ◽  
Author(s):  
Sergej Suzdalev ◽  
Saulius Gulbinskas ◽  
Vadim Sivkov ◽  
Tatiana Bukanova

The Baltic Sea is facing exceptionally intensive marine traffic. Oil products in addition to other cargo types are being transported in this marine area. Therefore, the risk of potential oil pollution is very high. Although, the Baltic Sea has not experienced catastrophic oil spills, there have been spills causing serious environmental damage in the region. Construction of oil terminals and planned growth of Russian oil export through Baltic Sea ports along with the operation of large oil enterprises and oil drilling platforms make maritime safety a priority task for the Baltic Sea region. The publications collected in present Baltica Journal Special Issue set sights on the improvement of oil spill management in the South–Eastern Baltic Sea as well as stimulate the appearance of new transnational response agreements in the region.


Author(s):  
Alexander Ermolov ◽  
Alexander Ermolov

International experience of oil spill response in the sea defines the priority of coastal protection and the need to identify as most valuable in ecological terms and the most vulnerable areas. Methodological approaches to the assessing the vulnerability of Arctic coasts to oil spills based on international systems of Environmental Sensitivity Index (ESI) and geomorphological zoning are considered in the article. The comprehensive environmental and geomorphological approach allowed us to form the morphodynamic basis for the classification of seacoasts and try to adapt the international system of indexes to the shores of the Kara Sea taking into account the specific natural conditions. This work has improved the expert assessments of the vulnerability and resilience of the seacoasts.


1995 ◽  
Vol 35 (1) ◽  
pp. 830
Author(s):  
D.J. Blackmore

It is vital that there is a credible and well organised arrangement to deal with oil spills in Australia.The National Plan to Combat Pollution of the Sea by Oil, the umbrella oil spill response plan for Australia, is a combined effort by the Commonwealth and State Governments, the oil industry and the shipping industry.The Australian Marine Oil Spill Centre (AMOSC), formed in 1991, is an industry centre set up for rapid response with equipment and resources, together with a training and industry coordination role.A review of the National Plan in 1992, identified, amongst a number of issues, that the National Plan needed to be re-focussed, to ensure full integration of all government and industry activities for the first time. This has led to greatly improved understanding between government and industry and significant improvements to Australia's oil spill response preparedness. The National Plan review has also resulted in a clearer definition of the responsibilities for operational control, together with the organisational structure to deliver a successful response.The current state of Australia's National Plan is such that it does provide confidence that there is the capacity to deliver an effective response to oil spills in the marine environment. Nevertheless, there is more to be done, particularly in the areas of planning and exercises.


1993 ◽  
Vol 1993 (1) ◽  
pp. 127-133
Author(s):  
Mac W. McCarthy ◽  
John McGrath

ABSTRACT On July 22, 1991, the Tuo Hai, a 46,500 ton Chinese grain carrier, collided with the Tenyo Maru, a 4,800 ton Japanese fish processing ship, off the coast of Washington State. The Tenyo Maru sank, creating an oil spill that cost upwards of $4 million (U.S.) to clean up. The incident initiated a joint response from the U.S. and Canadian governments. As part of this response, the Canadian Coast Guard mobilized an SRN-6 hovercraft. This air cushioned vehicle (ACV) provided logistical support to responders on both sides of the international boundary. The response operation along the Pacific Coast was extensive. Dense fog and the remote location of the impacted area provided formidable challenges to the cleanup effort. It was the mission scenario of the Canadian SRN-6 hovercraft to provide logistical support—as an experiment in ACV utility—to the organizations responding to this incident. Based on this experience, it can be argued that the hovercraft offers great potential value in responding to marine oil spills. Appropriate application of ACV technology can enhance oil spill response work, spill waste management, and incident surveillance. This paper discusses the contribution of the SRN-6 hovercraft to the Tenyo Maru response, briefly examines the use of another, very different hovercraft, during a response in the Gulf of St. Lawrence, and reviews a new hovercraft design and discusses its potential contributions.


Sign in / Sign up

Export Citation Format

Share Document