scholarly journals Evaluation of African Star Apple (Chrysophyllum albidum) Seed Oil as a Potential Feedstock for Industrial Application

Author(s):  
Otache Monday Abel ◽  
Amagbor Stella Chinelo ◽  
Inweh Cynthia ◽  
Godwin Kparobo Agbajor

Aims: Evaluate possible application of African Star Apple seed oil as industrial raw material geared towards possible conversion of waste to wealth with no negative impact as it borders on food scarcity. Also unveiling the possibility of a sustainable environment via the eradication of waste from the environment, thereby creating a clean environment. Place and Duration of Study: Fresh ripped fruits of African Star Apple were bought from some local market sellers at Agbarha-Otor market which is located in Ughelli North Local Government Area of Delta State, Nigeria on longitude 6° 2' 54" E /5° 30' 40" N, between November, 2019 and March, 2020. Experimental Details: Soxhlet extraction with n-hexane as solvent was used for the oil extraction of 100 g per batch of extraction. Pretreatment procedure of oil was done prior to transesterification. Homogenous base-catalyzed transesterification reaction was used in this study under controlled experimental conditions such as temperature, reaction time, methanol to oil molar ratio and catalyst type and concentration were examined under varied ranges to ascertain optimum experimental conditions for the reaction. Extracted seeds oil were analysed for its physicochemical properties using standard methods via: specific gravity, acid value, refractive index, saponification value, iodine value and free fatty acid using standard methods. Results: The results showed an oil yield of 14.9%, an indication that the seed reflects a poor source of abundant oil. Results obtained for the physiochemical properties, revealed that; specific gravity, refractive index, saponification value, acid value, free fatty acid and iodine value showed values of 0.896 kg/m3, 1.549, 231.32 mgKOH/g, 3.23 mgKOH/g, 2.07% and 47.63 mg/100 g respectively. Also, results for Methanol: Oil ratio showed that maximum yield was obtained at 6:1 molar ratio. Maximum conversion efficiency for molar concentration was achieved at 0.75% for both catalysts. While a reaction time of 125 min projected better yield. Conclusion: The seed of African star fruit are discarded as waste, therefore its use as a source of oil for industrial feedstock and other domestic application, poses no challenge with regards to food security. Its non-drying potential based on its low iodine value, makes it suitable lubricating oil for industrial application. Similarly, potential application of the oil as feedstock for the production of biodiesel is justified on the basis of its low acid value. Conclusively, the seeds may not have sufficient oil volume potential to be used as edible (domestic) and industrial oil. Consequently upon its low yield, application for biofuel production in commercial scale becomes unrealistic.

2016 ◽  
Vol 3 (3) ◽  
pp. 293-297
Author(s):  
A. A. Warra

Oil was extracted from the seed of Cassia sieberiana Lusing soxhlet apparatus. The oil yield was 9.26±0.01% and the colour of the seed oil was dark yellow. The results of the physico-chemical analysis revealed the following; acid value, iodine value, saponification value, peroxide value, relative density and refractive index of 0.35±0.01 mgKOH/g , 135.60 ±0.10 gI2/100g, 235.62 ±0.01 mgKOH/g, 1.8 ±0.10meq H2O2 , 0.8185±0.00 (g/cm3) and 1.4415 ±5.77 respectively indicating the suitability of the seed oil for pharmaceutical and cosmetic applications.


2021 ◽  
Vol 46 (2) ◽  
Author(s):  
C.O. Ajenu ◽  
M.E. Ukhun ◽  
C. Imoisi ◽  
E.E. Imhontu ◽  
L.E. Irede ◽  
...  

The physical value of oil depends upon its chemical composition, even today these values play a vital role while using different oil for industrial products and also, despite the vast nutritional and medicinal significance of egusi melon, there are little details on the shell life and stability of its oil over time. Therefore, the influence of time and temperature on melon seed oil was investigated at temperatures of 0oC and 30oC at different weeks to ascertain its physicochemical value and storage stability. For week zero, at 0oC and ambient temperature (30oC), the result revealed iodine value 124.09, Acid value 3.64 mgNaOH/g, Free Fatty Acid value 1.84 mgNaOH/g, Saponification 217.35 mgKOH/g, Peroxide value 1.25 mg/g oil, pH 5.89 and thiobarbituric acid value 0.1383 respectively. In the 5th week, at 30oC, the result revealed iodine value 91.1543, acid value 12.8921 mgNaOH/g, free fatty acid value 6.4988 mgNaOH/g, Saponification 346.42 mgKOH/g, Peroxide value 9.5mg/g oil, pH 3.2 and thiobarbituric acid value 0.413 respectively. Also at 0oC in the 5th week, the results were observed as follow: Iodine value 102.53, Acid value 7.96 mgNaOH/g, Free Fatty Acid value 4.01 mgNaOH/g, saponification 287.51 mgKOH/g, Peroxide value 6.1 mg/g oil, pH 5.05, and thiobarbituric acid value 0.2658 respectively. Refrigeration (0oC) of oil reduced the rate of most of the oxidative deterioration that produces rancidity. These values are within recommended range for edible oils. These results indicate that egusi melon oil could be a good source of table oil. The statistical results show that there was a significant difference between the melon seed oil stored at 0oC and 30oC (P < 0.001).


2021 ◽  
Vol 4 (1) ◽  
pp. 059-066
Author(s):  
Azuaga TI ◽  
Azuaga IC ◽  
Okpaegbe UC ◽  
Ibrahim AI ◽  
Manasseh CK

Soxhlet extraction of oil from seeds of Vitelleria paradoxa was carried out using n-hexane as the solvent. Standards methods were adopted in the analysis of the physiochemical properties; moisture content, melting point, total ash content, pH, specific gravity, iodine value, saponification value, acid value, free fatty acid value and ester value were all evaluated. The oil recovery rate was good with 32.6% yield, moisture content of 3.1%, melting point of 52oC and pH 5.7. Total ash content was 50.3%, specific gravity of 0.9 g/cm3, iodine value 39 mg/L, saponification value 224.6 mgKOH/g, acid value 59.9 mgKOH/g free fatty acid (FFA) 29.9 mgKOH/L and ester value 164.7 mg/L. The results shows that oil from Vitelleria paradoxa seed holds the potentials for wider applications in foods, cosmetics, pharmaceuticals, lubricants and soap making.


2020 ◽  
pp. 108201322095673
Author(s):  
M Al-Bachir ◽  
Y Koudsi

This research work was undertaken to evaluate the physicochemical parameters of oil from the cherry kernel non-irradiated and irradiated at 3 and 6 kGy of gamma irradiation for two storage periods (0 and 12 months). The acid value, peroxide value, thiobarbituric acid reactive substances value, iodine value, saponification value refractive index (peroxide value), and the color parameters of cherry kernel oils were determined. The results indicated that the extracted cherry kernel oils were liquid at room temperature with color varying from light yellow to deep red. The physicochemical properties of cherry kernel oils including acid value, peroxide value, thiobarbituric acid reactive substances, iodine value, saponification value, and refractive index values were 1.19 mg KOH g−1, 9.01 meq2 kg−1, 0.014 mg MDA kg−1, 99.48 KOH g−1 I2 100 g−1, 194.50 mg KOH g−1, and 1.472, respectively. Generally, gamma irradiation doses and storage time increased acid value, peroxide value, thiobarbituric acid reactive substances, and refractive index value of cherry kernel oils, whereas no significant (p > 0.05) change due to irradiation was recorded in iodine value, saponification value, and in color parameter (L*, a*, b*, and ΔE values) of cherry kernel oils. However, the properties of cherry kernel oils revealed that the cherry kernel is a good source of oil which could be used for industrial purposes.


2020 ◽  
Vol 71 (3) ◽  
pp. 367
Author(s):  
A. Al-Farga ◽  
M. Baeshen ◽  
F. M. Aqlan ◽  
A. Siddeeg ◽  
M. Afifi ◽  
...  

This study investigated the effects of blending alhydwan seed oil and peanut oil as a way of enhancing the stability and chemical characteristics of plant seed oils and to discover more innovative foods of high nutraceutical value which can be used in other food production systems. Alhydwan seed oil and peanut oil blended at proportions of 10:90, 20:80, 30:70, 40:60 and 50:50 (v/v) were evaluated according to their physi­cochemical properties, including refractive index, relative density, saponification value, peroxide value, iodine value, free fatty acids, oxidative stability index, and tocopherol contents using various standard and published methods. At room temperature, all of the oil blends were in the liquid state. The physicochemical profiles of the blended oils showed significant decreases (p < 0.05) in peroxide value (6.97–6.02 meq O2/kg oil), refractive index at 25 °C (1.462–1.446), free fatty acids (2.29–1.71%), and saponification value (186.44–183.77 mg KOH/g), and increases in iodine value and relative density at 25 °C (98.10–102.89 and 0.89–0.91, respectively), especially with an analhydwan seed oil to peanut oil ratio of 10:90. Among the fatty acids, oleic and linoleic acids were most abundant in the 50:50 and 10:90 alhydwan seed oil to peanut oil blends, respectively. Oxidative stability increased as the proportion of alhydwan oil increased. In terms of tocopherol contents (γ, δ, and α), γ-tocopherol had the highest values across all of the blended proportions, followed by δ-tocopherol. The overall acceptability was good for all blends. The incorporation of alhydwan seed oil into peanut oil resulted in inexpensive, high-quality blended oil that may be useful in health food products and pharmaceuticals without compromising sensory characteristics.


2021 ◽  
Vol 13 (1) ◽  
pp. 287-294
Author(s):  
Rakshit Pathak ◽  
Kritika Guleria ◽  
Anjali Kumari ◽  
Satya Pal Singh Mehta

According to India's National Biofuel Policy, only non-edible oilseed crops can be used for the biofuel feedstock. In this context, Camelina sativa is one such plant that fulfils all the criteria defined by the Biofuel policies of India. So, the present investigation was aimed to examine C. sativa seed oil capabilities as a biodiesel feedstock. Oil was deacidified via adsorption method applying Silica Gel as an adsorbent. The highest efficacy was obtained when 1:9 (Silica gel: oil) ratio was applied and the acid value was reduced from 6.45 to 2.78 mg KOH/g. Furthermore, oil was transesterified using methanol in the ratio of 1:6 (oil: methanol molar ratio) and 0.8 % (w/w of oil) of KOH as a catalyst at 70 ?C. The produced biodiesel was analyzed in terms of fuel-specific parameters and results were compared with American Society for Testing and Materials (ASTM) standards. The results were very much satisfactory and under the limits specified by the ASTM standards. The results revealed that oil to biodiesel conversion was 92.28 % with an acid value of 0.37 mg KOH/g. The measured Iodine value was 152 gI2/100g indicated the high unsaturation. Still, Camelina biodiesel showed oxidation stability of 6 h., which was a decent value compared to this much unsaturation. The sulphur content was also higher (24 ppm) than the specified limit (15 ppm). Besides, the fuel-specific parameters like sulphur content and iodine value were under the ASTM limits.


Author(s):  
Michael Akomaye Akpe ◽  
Faith Patrick Inezi

Aims and Objectives: To determine the effect of extracting solvents on the physicochemical properties of oils extracted from four locally available plant seeds in Nigeria namely: Alchornea cordiforlia, Hura crepitans, Irvingia gabonensis and Pycnanthus angollensis using three different solvents namely; n-Hexane, Petroleum ether and Dichloromethane. Place and Duration of Study: Department of Chemistry Laboratory, University of Calabar, Nigeria. The study was carried out between August 2019 and December 2019, (5 months). Methodology: Each plant seed was ground into a paste and extracted for its oil using a Soxhlet extractor and three different solvents namely; n-Hexane, Petroleum ether and Dichloromethane. The physicochemical properties of the oils were then analysed. Results: The results revealed the mean values of the physicochemical properties of A. cordifolia oil extracted using Hexane, Petroleum ether and Dichloromethane respectively were % yield (36.50, 34.50 and 32.00), specific gravity (0.91, 0.91 and 0.92), flash point (156.00, 155.00 and 191.00°C), Acid value (23.76, 25.10 and 26.80 mEqk-1), % free fatty acid (11.88, 12.55 and 13.40), Peroxide value (6.56, 6.38 and 6.90 mEqK-1), Saponification value (163.20, 156.40 and 165.50 mgKOHg-1) and iodine value (25.40, 48.60 and 46.50 g/100 g). The mean values of the properties of H. crepitans oil across the 3 solvents respectively were % yield (32.20, 31.50 and 29.00), specific gravity (0.92, 0.93 and 0.94), flash point (271.00, 259.00 and 240.00°C), Acid value (21.00, 21.80 and 22.20 mEqk-1), % free fatty acid (10.50, 10.90 and 11.10), Peroxide value (5.85, 6.26 and 7.10 mEqK-1), Saponification value (172.50, 190.40 and 185.60 mgKOHg-1) and Iodine value (43.60, 34.50 and 26.90 g/100 g). Properties of the I. gabonensis oil were % yield (33.20, 34.00 and 32.50), Specific gravity (0.92, 0.94 and 0.94), flash point (230.00, 236.00 and 260.00°C), Acid value (3.72, 3.70 and 3.90 mEqk-1), % free fatty acid (1.86, 1.85 and 1.95), Peroxide value (2.98, 4.26 and 3.63), Saponification value (239.50, 252.40 and 245.80) and Iodine value (25.30, 11.70 and 44.20). Mean values of P. angollensis oil properties were % yield (34.10, 36.20 and 33.00), Specific gravity (0.92, 0.92 and 0.93), flash point (260.00, 258.00 and 256.00°C), Acid value (23.68, 25.00 and 26.00 mEqk-1), % free fatty acid (11.84, 12.50 and 13.00), Peroxide value (4.25, 5.30 and 5.96), Saponification value (25.30, 52.50 and 57.30) and Iodine value (25.20, 11.68 and 44.40). The odour, colour and physical state of all the oils at room temperature was the same across the 3 solvents. Conclusion: The results indicate that the physicochemical properties of the oils vary with the extracting solvent and its polarity. Their properties revealed that some of them can be used for many domestic and industrial purposes especially for the making of paints, soap, cosmetics, lubricants and varnishes.


2016 ◽  
Vol 51 (3) ◽  
pp. 159-166
Author(s):  
JO Alademeyin ◽  
JO Arawande

Crude oil was extracted from Adenopus breviflorusbenthseeds using n-hexane and the extracted oil was degummed, neutralized and bleached. Oil sample at each stage was assessed for physicochemical parameters and fatty acid composition. The oil yield was 54.35± 0.120%. The specific gravity (at 25oC) of the oil was 0.901±0.001 and the refractive index (at 25oC) was 1.472±0.012. Processing of the crude oil resulted in progressive decrease in turbidity, colour, free fatty acid, acid value, peroxide value and saponification value. There was increase in smoke point (202.00±0.10 to 239.00±0.30oC), flash point (305.00±0.78 to 322.00±1.05oC) and fire point (352.00±1.00 to 359.00±1.25oC) as well as iodine value (112.50 to 120.20) and total fatty acid during the processing of the oil. The fatty acids detected in the oil samples were lauric myristic, palmitic, stearic, oleic, linoleic and linolenic acids. The predominant fatty acid was linoleic acid (57.597 ?59.774%) followed by oleic acid (11.099 ? 12.766%) while the least fatty acid was lauric acid (0.053 ?0.355%).Bangladesh J. Sci. Ind. Res.51(3), 159-166, 2016


2017 ◽  
Vol 7 (2) ◽  
pp. 111-115
Author(s):  
Sahrial Sahrial ◽  
Emanauli Emanauli ◽  
Meri Arisandi

Tea (Camellia sinensis) is widely grown for its leave sand is commercialized as black tea. Product diversification and value addition are currently are of great interest. This study provides data on the physicochemical properties of tea seed oil from Kayu Aro, Jambi Province. Extraction using-hexane was employed to obtain tea seed oil followed by physical-chemical analysis to assess its properties. Physicochemical properties, namely oil yield, density, refractive index, viscosity, turbidity, color, and melting point, as well as free fatty acid, iodine value, peroxide value, and saponification were determined. The oil yield is up to 14% (dB), density is 882.5±5.5kg/m3, refractive index is 1.48±0.20, viscosity is 64.1±0.2 Pa.s, turbidity is 0.88, color 47.0 (L),34.6 (C) and 95.3 (h) as well as free fatty acid 0.39-0.92%, iodine value 29.63-30.87gI2/100g, peroxide value 0.019-0.417 meq O2/100g, and saponification 127.721-168.382. Tea seed oil is stable and can be a potential source of edible and non-edible applications, such as natural nutraceutical,  pharmaceutical, and cosmetic products


2011 ◽  
Vol 8 (4) ◽  
pp. 1986-1992 ◽  
Author(s):  
E. O. Eddy ◽  
J. A. Ukpong ◽  
E. E. Ebenso

Oil fromTelfaria occidentalisandAnarcardium occidentalehas been extracted and characterized. The lipid content of theTelfaria occidentalisandAnarcardium occidentaliswere 58.41% and 42.15% respectively. The physicochemical parameters ofTelfaria occidentalisandAnarcardium occidentaleseeds were; boiling point; (58.90, 62.60°C), melting point; (18.50, 21.80°C), refractive index; (1.462, 1.498), specific gravity; (0.87, 0.69) saponification value; (91.16, 92.57) iodine value; (51.52, 47.20), acid value; (0.76, 3.74) ester value; (90.40, 88.87), % free fatty acid; (.38, 1.88) and peroxide value; (11.75, 15.23) respectively. Oils from these seeds were found to exhibit the needed potentials for utilization in paint and food industries and as biofuel.


Sign in / Sign up

Export Citation Format

Share Document