scholarly journals Aqueous Phase Adsorption of Pb (II) Ions onto Hymenoptera sphecidae (Mud-wasp) Nest

Author(s):  
Donald T. Kukwa ◽  
Peter A. Adie ◽  
Rose E. Kukwa ◽  
Paula D. Kungur

Removal of Pb (II) ion from aqueous solution using Hymenoptera sphecidae (mud-wasp) nest was investigated using a batch process. The effect of pH, contact time and adsorbent dose were also investigated. The result showed that the adsorption of Pb (II) ion onto mud-wasp nest was dependent on pH, contact time and adsorbent dose. Adsorption patterns were analysed in terms of three bi-parameter isotherms of Langmuir, Freundlich and Temkin. Freundlich isotherm gave the best fit to the adsorption data with a correlation coefficient of 0.992, while monolayer sorption capacity yielded 41.667 mg/g. Lagergren’s pseudo first-order and pseudo second-order kinetic models were used to test the adsorption kinetics. The kinetic data were well described by the pseudo second-order kinetic model, suggesting that the process was chemisorption type.  The results showed that mud-wasp nest can be used as a low-cost adsorbent for the removal of Pb (II) ion from aqueous solutions.

2011 ◽  
Vol 183-185 ◽  
pp. 362-366 ◽  
Author(s):  
Jun Li ◽  
Ming Zhen Hu

Adsorption removal of a cationic dye, rhodamine B (RhB) from water onto rectorite and sepiolite was investigated. The rectorite and sepiolite were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Attempts were made to fit the isothermal data using Langmuir and Freundlich equations. The experimental results have demonstrated that the equilibrium data are fitted well by a Freundlich isotherm equation. Pseudo-first-order and pseudo-second-order models were considered to evaluate the rate parameters. The experimental data were well described by the pseudo-second-order kinetic model. The results indicate that the rectorite exhibited higher adsorption capacity for the removal of RhB than sepiolite and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Sumanjit Kaur ◽  
Seema Rani ◽  
Rakesh Kumar Mahajan

The present work aims to investigate the removal of dye congo red from aqueous solutions by two low-cost biowaste adsorbents such as ground nut shells charcoal (GNC) and eichhornia charcoal (EC) under various experimental conditions. The effect of contact time, ionic strength, temperature, pH, dye concentration, and adsorbent dose on the removal of dye was studied. The kinetic experimental data were fitted to pseudo-first order, pseudo-second order, intraparticle diffusion, Elovich model, and Bangham’s model. Results imply that adsorption of congo red on these adsorbents nicely followed the second order kinetic model and maximum adsorption capacity was found to be 117.6 and 56.8 mg g−1for GNC and EC at 318 K, however it increases with increase in temperature for both adsorbents. Equilibrium isotherms were analyzed by Langmuir, Freundlich, Temkin, Dubinin and Radushkevich, and Generalized Isotherms. Freundlich isotherm described the isotherm data with high-correlation coefficients. The results of the present study substantiate that biowaste material GNC and EC are promising adsorbents for the removal of the dye congo red.


2021 ◽  
Vol 11 (5) ◽  
pp. 12831-12842

High amounts of phosphate (PO43–) discharged in receiving water can lead to eutrophication, which endangers life below water and human health. This study elucidates the removal of PO43– from synthetic solution by iron-coated waste mussel shell (ICWMS). The PO43– adsorption by ICWMS was determined at different process parameters, such as initial PO43– concentration (7 mg L−1), solution volume (0.2 L), adsorbent dosage (4, 8, 12, 16, and 20 g), and contact time. The highest efficiency of PO43− removal can reach 96.9% with an adsorption capacity of 0.30 mg g−1 could be obtained after a contact time of 48 h for the use of 20 g of ICWMS. Batch experimental data can be well described by the pseudo-second-order kinetic model (R2 = 0.999) and Freundlich isotherm model (R2 = 0.996), suggesting that chemisorption and multilayer adsorption occurred. The efficiency of PO43– removal from aqueous solution by ICWMS was verified to contribute to applying a new low-cost adsorbent obtained from waste mussel shell in the field of wastewater treatment.


2018 ◽  
Vol 4 (3) ◽  
pp. 620 ◽  
Author(s):  
Seyed Hassan Sharifi Pajaie ◽  
Saltanat Archin ◽  
Ghasem Asadpour

This study was aimed to use Cellulose dusts (CD) produced in drying section of paper mills of paper making industry as a potential adsorbent to remove methylene blue (MB) dye from aqueous solution.  The adsorbent was characterized by scanning electron microscopy and Fourier transform infrared spectrometer and X-ray Diffraction. The influences of the effective parameters including pH solution, adsorbent dosage, initial MB concentration, and contact time were optimized by CCD which stands for central composite design. The influence of these parameters on the adsorption capacity was analyzed using the batch process. The accuracy of the equation that is produced by CCD was affirmed by the variance analysis and also by calculating the correlation coefficient that connects the predicted and the empirical values of the percentage of removed MB dye. Maximum removal percentage of MB dye (98.05 %) which obtained at pH 9.84, adsorbent dosage 4.38 g L-1, MB concentration 75.50 g L-1 and time 208.13 min. Freundlich, Temkin, Harkins-Jura and Langmuir isotherms are used to analyze the empirical data. Results revealed that the data is in a satisfying agreement with the Freundlich isotherm (R2= 0.99). Pseudo-first order, Pseudo-second-order, Elovich and Intraparticle diffusion models were used to fit the kinetic data and it is found out that MB dye’s adsorption onto CD has a good agreement with the pseudo-second-order kinetic model. The results showed that CD can be an efficient and low-cost adsorbent for methylene blue adsorption.


Author(s):  
Amarnath P.C & Shashikala K. J. Praveen Kumar D. G., Kalleshappa C.M.,

In the present study we explored the adsorptive characteristics of 4-nitroaniline from synthetic aqueous solution onto bagasse fly ash (BFA). Batch experiments were carried out to determine the influence of parameters like initial pH (pH0), adsorbent dose (m), contact time (t) and initial concentration (C0) on the removal of 4-nitroaniline. The maximum removal of 4-nitroaniline was determined to be 98% at lower concentrations (50 mg/L) and 41% at higher concentrations (300 mg/L), using a BFA dosage of 10 g/L at 303K. Kinetic study of 4-nitroaniline removal by BFA was well represented by pseudo second-order kinetic model. The 4-nitroaniline desorption from 4-nitroaniline loaded BFA shows that only 27% and 36% of 4-nitroaniline could be recovered using ethyl alcohol and acetone respectively.


2021 ◽  
Author(s):  
Samina Zaman ◽  
Md. Nayeem Mehrab ◽  
Md. Shahnul Islam ◽  
Gopal Chandra Ghosh ◽  
Tapos Kumar Chakraborty

Abstract This study investigates the potential applicability of hen feather (HF) to remove methyl red (MR) dye from aqueous solution with the variation of experimental conditions: contact time (1–180 min), pH (4–8), initial dye concentration (5–50 mg/L) and adsorbent dose (3–25 g/L). Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) evaluate the surface morphology and chemistry of HF, respectively. The maximum removal of MR by HF was 92% when the optimum conditions were initial MR dye concentration 05 mg/L, pH 4.0, adsorbent dose 07.0 g/L and 90.0 min equilibrium contact time. Langmuir isotherm (R2 = 0.98) was more suited than Freundlich isotherm (R2 = 0.96) for experimental data, and the highest monolayer adsorption capacity was 6.02 mg/g. The kinetics adsorption data fitted well to pseudo-second-order model (R2 = 0.999) and more than one process were involved during the adsorption mechanism but film diffusion was the potential rate-controlling step. The findings of the study show that HF is a very effective and low-cost adsorbent for removing MR dye from aqueous solutions.


Author(s):  
Farhad Salimi ◽  
Keivan Tahmasobi ◽  
Changiz Karami ◽  
Alireza Jahangiri

Modified nano-silica with Bismuth and Iron adsorbent was synthesized to be used as an effective adsorbent material for methylene blue (MB) removal from water solution. The prepared samples were characterized using SEM, FTIR, XRD and TEM. The effect of experimental parameters such as pH, contact time and initial concentration on adsorption treatment were studied. Results indicated that the optimum conditions for maximum <strong>adsorption</strong> of 20 mg/L MB <strong>were:</strong> contact time of 20 minutes, pH= 5-6 and 8 gr/L adsorbent, the remaining MB in solution was 1.75%. Langmuir and Freundlich isotherms were employed to model the experimental results and the Freundlich isotherm was the best-fitting models for the experiment results. The kinetic data were also analyzed through pseudo-first-order and pseudo-second-order models. The pseudo-second-order kinetic model well depicted the kinetics of dyes adsorption on adsorbent.


2016 ◽  
Vol 75 (4) ◽  
pp. 753-764 ◽  
Author(s):  
Asma Ehsan ◽  
Haq Nawaz Bhatti ◽  
Munawar Iqbal ◽  
Saima Noreen

Environmental applications of composites have attracted the interests of researchers due to their excellent adsorption efficiency for pollutants. Native, HCl pre-treated clay and MnFe2O4/clay composite were investigated as an adsorbent for removal of methyl green from aqueous solution. The adsorption behaviors of dye onto native, HCl pre-treated and composite clays were studied as a function of contact time, adsorbent dose, pH, initial dye concentration and temperature. Maximum dye adsorption of 44 mg/g was achieved at pH of 8, contact time 40 min, adsorbent dose 0.20 g/L and initial dye concentration of 125 mg/L using clay composite. The Langmuir isotherm and pseudo-second-order kinetic model best explained the methyl green dye adsorption onto clay adsorbents. Thermodynamic parameters revealed the endothermic and spontaneous adsorption nature of dye. From results, it is concluded that clay has potential for adsorbing methyl green and can be used for the removal of dyes from industrial effluents.


2010 ◽  
Vol 7 (s1) ◽  
pp. S377-S385 ◽  
Author(s):  
A. K. Patil ◽  
V. S. Shrivastava

In this method,Leucaena leucocephalaseed pods (LLSP) have been used for removal of Cu(II) ions from aqueous solution. Batch adsorption experiments were conducted to study the effect of process parameters like pH, contact time initial Cu(II) ions concentration and adsorbent dose. The maximum adsorption of Cu(II) ions onLeucaena leucocephalaseed pods was 94.17% at pH 5. The amount of metal adsorbed per unit weight of adsorbent increases with time and reach equilibrium after 30 minutes of shaking time for the different initial metal concentrations. The Freundlich and Langmuir isotherm equations were applied for the equilibrium adsorption data and the various isotherm parameters were evaluated. The obtained plots were linear as evident fromR2values close to unity. The data agreed very well with the pseudo second-order kinetic model.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 852
Author(s):  
Sicong Yao ◽  
Massimiliano Fabbricino ◽  
Marco Race ◽  
Alberto Ferraro ◽  
Ludovico Pontoni ◽  
...  

Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.


Sign in / Sign up

Export Citation Format

Share Document