scholarly journals Photon Shielding Characterization of SiO2-PbO-CdO-TiO2 Glasses for Radiotheraphy Shielding Application

Author(s):  
Idris M. Mustapha ◽  
Atimga B. James ◽  
Sulayman M. Bello

In this study, photon attenuation parameters of (30-x) SiO2–15PbO–10CdO-xTiO2, with x = 0, 2, 4, 6, 8 and 10% mol, were determined and their application as shielding material were discussed. The WinXCOM software was used to determine the mass attenuation coefficient of the studied glasses for the energy range (0.015-15MeV). The mass attenuation coefficient of the glass samples first decline up to 0.09 MeV and slightly increase abruptly and then declined uniformly for all the glasses to approximately zero after about 10 MeV.   The effective atomic number (Zeff) was also calculated for the glass samples and were observe to raise from 0.015 to 0.02 MeV and then decreased between 0.02-5 MeV. On account of the dominance of the photoelectric effect in the low energy region, there was a sudden increase in Zeff at about 0.08 MeV close to the absorption edge of the Pb (0.088 MeV). The rapid increment was observed at 0.1–1.5 MeV by transcending typical Compton scattering interaction at intermediate energies for Zeff'’s and began to decrease in the same form again. The lower Zeff   values were found in low and high energy region for all SPCT glasses. The calculated mean free path, half value layer and tenth value layer values were observe to decline as the TiO2 doping of the glasses increased which accounts for the  three photon interaction mechanisms effectiveness in the variation of MFP and HVL values with energy. It can be concluded that SPCT glasses may be considered an alternative material for radiation shielding practices.

2019 ◽  
Vol 107 (6) ◽  
pp. 517-522 ◽  
Author(s):  
M. Almatari

Abstract Radiations are widely used in hospitals and health services in radiotherapy and molecular imaging using x-ray and gamma radiation which considered as the most penetrating radiations and very difficult to shield. In this study, the radiation shielding properties of different zinc oxide (ZnO) concentrations of the (95-x)TeO2-5TiO2-xZnO (x=5, 10, 15, 20, 25, 30 and 40 mol%) glass system was investigated to be introduced as a new transparency effective shielding material. In order to study shielding properties, mass attenuation coefficients in the energy range of 0.015–15 MeV photon energies for the current glass system were calculated using ParShield software. Moreover, half value layer, mean free path and effective atomic number were evaluated using the obtained attenuation coefficient. The results indicated that if ZnO was added to the current glass system the mass attenuation coefficient will be decreased as well as effective atomic number values. The highest mass attenuation coefficient at all energies was found to be in TT5Z5 glass sample as well as the effective atomic number value.


2010 ◽  
Vol 93-94 ◽  
pp. 71-74
Author(s):  
N. Chanthima ◽  
Jakrapong Kaewkhao ◽  
Weerapong Chewpraditkul ◽  
Pichet Limsuwan

Mass attenuation coefficient, total interaction cross-section and effective atomic number of xPbO:(100-x)SiO2, where 30 x 70 (% weight), glass system have been investigated at 662 keV on the basis of the mixture rule. The results are in good agreement with the theoretical values, calculated by WinXCom. The mass attenuation coefficient increases with PbO content, due to higher probability of photoelectric absorption in glass. However, Compton scattering gives dominant contribution to the total mass attenuation coefficient for the glass samples studied. The shielding properties of the glass samples are also better than ordinary shielding concretes and commercial window glasses. These results indicate that the glass systems prepared in this study has a potential to be used as radiation shielding materials.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4776 ◽  
Author(s):  
Hanan Al-Ghamdi ◽  
Mengge Dong ◽  
M. I. Sayyed ◽  
Chao Wang ◽  
Aljawhara H. Almuqrin ◽  
...  

The role La2O3 on the radiation shielding properties of La2O3-CaO-B2O3-SiO2 glass systems was investigated. The energies were selected between 0.284 and 1.275 MeV and Phy-X software was used for the calculations. BLa10 glass had the least linear attenuation coefficient (LAC) at all the tested energies, while BLa30 had the greatest, which indicated that increasing the content of La2O3 in the BLa-X glasses enhances the shielding performance of these glasses. The mass attenuation coefficient (MAC) of BLa15 decreases from 0.150 cm2/g to 0.054 cm2/g at energies of 0.284 MeV and 1.275 MeV, respectively, while the MAC of BLa25 decreases from 0.164 cm2/g to 0.053 cm2/g for the same energies, respectively. At all energies, the effective atomic number (Zeff) values follow the trend BLa10 < BLa15 < BLa20 < BLa25 < BLa30. The half value thickness (HVL) of the BLa-X glass shields were also investigated. The minimum HVL values are found at 0.284 MeV. The HVL results demonstrated that BLa30 is the most space-efficient shield. The tenth value layer (TVL) results demonstrated that the glasses are more effective attenuators at lower energies, while decreasing in ability at greater energies. These mean free path results proved that increasing the density of the glasses, by increasing the amount of La2O3 content, lowers MFP, and increases attenuation, which means that BLa30, the glass with the greatest density, absorbs the most amount of radiation.


2020 ◽  
Vol 15 (11) ◽  
pp. 1374-1380
Author(s):  
H. Almohiy ◽  
M. Saad ◽  
Y. M. AbouDeif ◽  
Iwona Grelowska ◽  
M. Reben ◽  
...  

This research reported on the radiation safety characteristics of doped fluorophosphate glasses with heavy rare earth lanthanide (Sm2O3) in the composition 40P2O5/30ZnO/20BaF2/3.8K2TeO3/1.2Al2O3/5.0Nb2O5/30000 ppm Sm2O3 and 40P2O5/30ZnO/20BaF2/3.8K2TeO3/1.2Al2O3/5.0Nb2O5/40000 ppm Sm2O3 in mol%. The parameters for shielding like that mass attenuation coefficient, MAC, linear attenuation coefficient, LAC, tenth value layers, TVL, half-value layers, HVL, effective atomic number, (Zeff), mean free path, MFP, electron density, Neff, electronic cross-sections, ECS, and total atomic cross-sections, ACS, were calculated between 0.015 and 15 MB of preparation glasses. The protection parameters of the current glasses are good in comparison to industrial materials used for nuclear shieldings, such as glass RS 253, ordinary concrete (OC), hematite serpenite (HS), or basalt magnet (BM). From the above mention results, the prepared glasses can be used as radiation safety materials.


2014 ◽  
Vol 979 ◽  
pp. 426-430
Author(s):  
Narong Sangwaranatee ◽  
Jakrapong Kaewkhao ◽  
Natthakridta Chanthima

The total mass attenuation coefficient, partial photon interaction and effective atomic number of commercial window added with BaSO4in have been investigated at photon energy from 1 keV to 100 GeV on the basis of calculation. The theoretical values of total and partial interaction were obtained by the WinXCom software. The variations of mass attenuation coefficient and effective atomic number with photon energy are shown graphically. The results show that the variation of mass attenuation coefficient and effective atomic number has changed with photon energy and composition of window. It has been found that these parameters increase with increasing BaSO4concentrations, due to the increasing photoelectric absorption in glass samples. These results showed that the BaSO4can improve radiation shielding properties in commercial glass and useful for radiation shielding material design.


2021 ◽  
Vol 11 (12) ◽  
pp. 5697
Author(s):  
Aljawhara H. Almuqrin ◽  
M. I. Sayyed

This research work aims to investigate the radiation shielding ability of a Yb3+-doped calcium borotellurite glass system. The system has the basic composition of CaF2–CaO–B2O3–TeO2–Yb2O3 but is denoted as TeBYbn for simplicity. The effect of increasing the TeO2 content in the glasses from 10 to 54 mol% was investigated, with five different chosen compositions and densities. The Phy-X/PSD program was used to investigate the mass attenuation coefficient (µ/ρ) of the samples. The mass attenuation coefficients were theoretically determined by using an online software for the calculation of shielding parameters. Other parameters were then calculated and analyzed, such as the linear attenuation coefficient (µ), transmission factor (TF), radiation protection efficiency (RPE), effective atomic number (Zeff), and mean free path (MFP). TeBYb5, the glass with the greatest TeO2 content, was shown to have the greatest µ/ρ; however, at greater energies, the differences between the values are practically negligible. µ was shown to increase with density, such as from 0.386 cm−1 to 0.687 cm−1 for TeBYb1 and TeBYb5 at 0.284 MeV, respectively. The least TF was found for samples with a thickness of 1.5 cm, proving an inverse correlation between the thickness of the sample and the TF. The HVL and TVL of the glasses decreased as the density of the samples increased, which means that TeBYb1 is the least effective out of the investigated glasses. The five samples proved to have a lower MFP than some other shielding glasses, demonstrating their capabilities as radiation shields. Based on the calculated parameters, TeBYb5 indicated the greatest photon attenuation ability.


2020 ◽  
Vol 10 (21) ◽  
pp. 7680
Author(s):  
M. I. Sayyed ◽  
Faras Q. Mohammed ◽  
K. A. Mahmoud ◽  
Eloic Lacomme ◽  
Kawa M. Kaky ◽  
...  

Due to their excellent heat resistance, superalloys are used predominantly in the manufacturing of engine parts and accessories for aircraft and aerospace equipment. The Monte Carlo simulation (MCNP-5) code was performed to estimate the mean track length of the incident photons inside six different alloys. Then, based on the simulated track length, other important γ-ray shielding parameters were calculated. In this study, the highest mass attenuation coefficient was obtained for alloys encoded MAR-302 and MAR-247 and varied in the range 0.035–72.94 and 0.035–71.98 cm2·g−1, respectively. The lowest mass attenuation coefficient was found for alloys coded Inconel-718 and Nimocast-75 with a range of 0.033–59.25 and 0.32–59.30 cm2·g−1, respectively. Use was made of a recently developed online program Phy-X/PD to calculate the effective atomic number, equivalent atomic number, and the buildup factors for the alloys of interest. The effective removal cross-section for the fast neutron was also calculated for the studied alloys: the highest value was found for the alloys coded with Inconel-718 (∑R = 0.01945 cm2·g−1) and Nimocast-75 (∑R = 0.01940 cm2·g−1), and the lowest value was obtained for alloy coded MAR-302 (∑R = 0.01841 cm2·g−1). Calculated data indicate that MAR-302 and MAR-247 are superior candidates for shielding of gamma-rays, while Inconel-718 and Nimocast-75 MAR-302 are suitable for the shielding of fast neutrons.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3928
Author(s):  
Mohamed Elsafi ◽  
M. F. Alrashedi ◽  
M. I. Sayyed ◽  
Ibrahim F. Al-Hamarneh ◽  
M. A. El-Nahal ◽  
...  

This paper aims to study the radiation shielding characteristics and buildup factor of some types of granite in Egypt. The mass attenuation coefficient (MAC) for three types of granite (gandola, white halayeb, and red aswani) was experimentally determined, and the experimental results were validated by XCOM software. The relative deviation between the two methods does not exceed 3% in all discussed granite samples, which means that MAC calculated through the experimental and XCOM are in suitable agreement. The effective atomic number (Zeff) varies from 13.64 to 10.69, 13.68 to 10.59, and 13.45 and 10.66 for gandola, white halayeb, and red aswani, respectively. As well as the equivalent atomic number (Zeq) was calculated in a wide range of energy to deduce the exposure (EBF) and energy absorption (EABF) buildup factors for the studied granite materials. The linear attenuation coefficient (LAC), half-value layer (HVL), mean free path (MFP) were calculated at each investigated energy and showed that the most effective shielding ability at high energy was red aswani, while at low energy, the shielding ability was nearly constant for studied granites. The present study forms the first endeavor to obtain the radiation shielding properties of the studied materials to be used in practical applications.


Author(s):  
Ayano Shanko, MD, Et. al.

The aim of the research is to estimate the X-ray shielding properties of different glass systems using Monte Carlo Simulation. X-ray glass is also known as radiation shielding glass. Glass provides protection against the absorption of energy radiation. The shielding layer is formed by a high concentration of lead and barium. The mass attenuation coefficient, the effective atomic number and the effective electron density are used to determine the position of gamma-ray photons in matter. Shield characterization in terms of mass attenuation coefficient (μm), transmission fraction (T), effective atomic numbers (Zeff), half-value layer (HVL) and exposure build-up. factor (EBF) of a glass system is estimated by the Monte Carlo Simulation. The random sampling and statistical analysis are computed using the monte carlo simulation. Various external factors are considered as the input parameters. The different composition of the glass will be examined using the Monte Carlo simulation and the shielding capability would be determined for the various samples.


Sign in / Sign up

Export Citation Format

Share Document