scholarly journals Gamma Ray Shielding Properties of Yb3+-Doped Calcium Borotellurite Glasses

2021 ◽  
Vol 11 (12) ◽  
pp. 5697
Author(s):  
Aljawhara H. Almuqrin ◽  
M. I. Sayyed

This research work aims to investigate the radiation shielding ability of a Yb3+-doped calcium borotellurite glass system. The system has the basic composition of CaF2–CaO–B2O3–TeO2–Yb2O3 but is denoted as TeBYbn for simplicity. The effect of increasing the TeO2 content in the glasses from 10 to 54 mol% was investigated, with five different chosen compositions and densities. The Phy-X/PSD program was used to investigate the mass attenuation coefficient (µ/ρ) of the samples. The mass attenuation coefficients were theoretically determined by using an online software for the calculation of shielding parameters. Other parameters were then calculated and analyzed, such as the linear attenuation coefficient (µ), transmission factor (TF), radiation protection efficiency (RPE), effective atomic number (Zeff), and mean free path (MFP). TeBYb5, the glass with the greatest TeO2 content, was shown to have the greatest µ/ρ; however, at greater energies, the differences between the values are practically negligible. µ was shown to increase with density, such as from 0.386 cm−1 to 0.687 cm−1 for TeBYb1 and TeBYb5 at 0.284 MeV, respectively. The least TF was found for samples with a thickness of 1.5 cm, proving an inverse correlation between the thickness of the sample and the TF. The HVL and TVL of the glasses decreased as the density of the samples increased, which means that TeBYb1 is the least effective out of the investigated glasses. The five samples proved to have a lower MFP than some other shielding glasses, demonstrating their capabilities as radiation shields. Based on the calculated parameters, TeBYb5 indicated the greatest photon attenuation ability.

Author(s):  
Idris M. Mustapha ◽  
Atimga B. James ◽  
Sulayman M. Bello

In this study, photon attenuation parameters of (30-x) SiO2–15PbO–10CdO-xTiO2, with x = 0, 2, 4, 6, 8 and 10% mol, were determined and their application as shielding material were discussed. The WinXCOM software was used to determine the mass attenuation coefficient of the studied glasses for the energy range (0.015-15MeV). The mass attenuation coefficient of the glass samples first decline up to 0.09 MeV and slightly increase abruptly and then declined uniformly for all the glasses to approximately zero after about 10 MeV.   The effective atomic number (Zeff) was also calculated for the glass samples and were observe to raise from 0.015 to 0.02 MeV and then decreased between 0.02-5 MeV. On account of the dominance of the photoelectric effect in the low energy region, there was a sudden increase in Zeff at about 0.08 MeV close to the absorption edge of the Pb (0.088 MeV). The rapid increment was observed at 0.1–1.5 MeV by transcending typical Compton scattering interaction at intermediate energies for Zeff'’s and began to decrease in the same form again. The lower Zeff   values were found in low and high energy region for all SPCT glasses. The calculated mean free path, half value layer and tenth value layer values were observe to decline as the TiO2 doping of the glasses increased which accounts for the  three photon interaction mechanisms effectiveness in the variation of MFP and HVL values with energy. It can be concluded that SPCT glasses may be considered an alternative material for radiation shielding practices.


2019 ◽  
Vol 107 (6) ◽  
pp. 517-522 ◽  
Author(s):  
M. Almatari

Abstract Radiations are widely used in hospitals and health services in radiotherapy and molecular imaging using x-ray and gamma radiation which considered as the most penetrating radiations and very difficult to shield. In this study, the radiation shielding properties of different zinc oxide (ZnO) concentrations of the (95-x)TeO2-5TiO2-xZnO (x=5, 10, 15, 20, 25, 30 and 40 mol%) glass system was investigated to be introduced as a new transparency effective shielding material. In order to study shielding properties, mass attenuation coefficients in the energy range of 0.015–15 MeV photon energies for the current glass system were calculated using ParShield software. Moreover, half value layer, mean free path and effective atomic number were evaluated using the obtained attenuation coefficient. The results indicated that if ZnO was added to the current glass system the mass attenuation coefficient will be decreased as well as effective atomic number values. The highest mass attenuation coefficient at all energies was found to be in TT5Z5 glass sample as well as the effective atomic number value.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4776 ◽  
Author(s):  
Hanan Al-Ghamdi ◽  
Mengge Dong ◽  
M. I. Sayyed ◽  
Chao Wang ◽  
Aljawhara H. Almuqrin ◽  
...  

The role La2O3 on the radiation shielding properties of La2O3-CaO-B2O3-SiO2 glass systems was investigated. The energies were selected between 0.284 and 1.275 MeV and Phy-X software was used for the calculations. BLa10 glass had the least linear attenuation coefficient (LAC) at all the tested energies, while BLa30 had the greatest, which indicated that increasing the content of La2O3 in the BLa-X glasses enhances the shielding performance of these glasses. The mass attenuation coefficient (MAC) of BLa15 decreases from 0.150 cm2/g to 0.054 cm2/g at energies of 0.284 MeV and 1.275 MeV, respectively, while the MAC of BLa25 decreases from 0.164 cm2/g to 0.053 cm2/g for the same energies, respectively. At all energies, the effective atomic number (Zeff) values follow the trend BLa10 < BLa15 < BLa20 < BLa25 < BLa30. The half value thickness (HVL) of the BLa-X glass shields were also investigated. The minimum HVL values are found at 0.284 MeV. The HVL results demonstrated that BLa30 is the most space-efficient shield. The tenth value layer (TVL) results demonstrated that the glasses are more effective attenuators at lower energies, while decreasing in ability at greater energies. These mean free path results proved that increasing the density of the glasses, by increasing the amount of La2O3 content, lowers MFP, and increases attenuation, which means that BLa30, the glass with the greatest density, absorbs the most amount of radiation.


2020 ◽  
Vol 15 (11) ◽  
pp. 1374-1380
Author(s):  
H. Almohiy ◽  
M. Saad ◽  
Y. M. AbouDeif ◽  
Iwona Grelowska ◽  
M. Reben ◽  
...  

This research reported on the radiation safety characteristics of doped fluorophosphate glasses with heavy rare earth lanthanide (Sm2O3) in the composition 40P2O5/30ZnO/20BaF2/3.8K2TeO3/1.2Al2O3/5.0Nb2O5/30000 ppm Sm2O3 and 40P2O5/30ZnO/20BaF2/3.8K2TeO3/1.2Al2O3/5.0Nb2O5/40000 ppm Sm2O3 in mol%. The parameters for shielding like that mass attenuation coefficient, MAC, linear attenuation coefficient, LAC, tenth value layers, TVL, half-value layers, HVL, effective atomic number, (Zeff), mean free path, MFP, electron density, Neff, electronic cross-sections, ECS, and total atomic cross-sections, ACS, were calculated between 0.015 and 15 MB of preparation glasses. The protection parameters of the current glasses are good in comparison to industrial materials used for nuclear shieldings, such as glass RS 253, ordinary concrete (OC), hematite serpenite (HS), or basalt magnet (BM). From the above mention results, the prepared glasses can be used as radiation safety materials.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3928
Author(s):  
Mohamed Elsafi ◽  
M. F. Alrashedi ◽  
M. I. Sayyed ◽  
Ibrahim F. Al-Hamarneh ◽  
M. A. El-Nahal ◽  
...  

This paper aims to study the radiation shielding characteristics and buildup factor of some types of granite in Egypt. The mass attenuation coefficient (MAC) for three types of granite (gandola, white halayeb, and red aswani) was experimentally determined, and the experimental results were validated by XCOM software. The relative deviation between the two methods does not exceed 3% in all discussed granite samples, which means that MAC calculated through the experimental and XCOM are in suitable agreement. The effective atomic number (Zeff) varies from 13.64 to 10.69, 13.68 to 10.59, and 13.45 and 10.66 for gandola, white halayeb, and red aswani, respectively. As well as the equivalent atomic number (Zeq) was calculated in a wide range of energy to deduce the exposure (EBF) and energy absorption (EABF) buildup factors for the studied granite materials. The linear attenuation coefficient (LAC), half-value layer (HVL), mean free path (MFP) were calculated at each investigated energy and showed that the most effective shielding ability at high energy was red aswani, while at low energy, the shielding ability was nearly constant for studied granites. The present study forms the first endeavor to obtain the radiation shielding properties of the studied materials to be used in practical applications.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1158
Author(s):  
Huseyin O. Tekin ◽  
Shams A. M. Issa ◽  
Gokhan Kilic ◽  
Hesham M. H. Zakaly ◽  
Mohamed M. Abuzaid ◽  
...  

In the current study, promising glass composites based on vanadium pentoxide (V2O5)-doped zinc borate (ZnB) were investigated in terms of their nuclear-radiation-shielding dynamics. The mass and linear attenuation coefficient, half-value layer, mean free path, tenth-value layer, effective atomic number, exposure-buildup factor, and energy-absorption-buildup factor were deeply simulated by using MCNPX code, Phy-X PSD code, and WinXcom to study the validation of ZBV1, ZBV2, ZBV3, and ZBV4 based on (100−x)(0.6ZnO-0.4B2O3)(x)(V2O5) (x = 1, 2, 3, 4 mol%) samples against ionizing radiation. The results showed that attenuation competencies of the studied glasses slightly changed while increasing the V2O5 content from 1 mol% to 4 mol%. The domination of ZnO concentration in the composition compared to B2O3 makes ZnO substitution with V2O5 more dominant, leading to a decrease in density. Since density has a significant role in the attenuation of gamma rays, a negative effect was observed. It can be concluded that the aforementioned substitution can negatively affect the shielding competencies of studied glasses.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5061
Author(s):  
Dalal Abdullah Aloraini ◽  
Aljawhara H. Almuqrin ◽  
M. I. Sayyed ◽  
Hanan Al-Ghamdi ◽  
Ashok Kumar ◽  
...  

The gamma-ray shielding features of Bi2O3-CaO-K2O-Na2O-P2O5 glass systems were experimentally reported. The mass attenuation coefficient (MAC) for the fabricated glasses was experimentally measured at seven energy values (between 0.0595 and 1.33 MeV). The compatibility between the practical and theoretical results shows the accuracy of the results obtained in the laboratory for determining the MAC of the prepared samples. The mass and linear attenuation coefficients (MACs) increase with the addition of Bi2O3 and A4 glass possesses the highest MAC and LAC. A downward trend in the linear attenuation coefficient (LAC) with increasing the energy from 0.0595 to 1.33 MeV is found. The highest LAC is found at 1.33 MeV (in the range of 0.092–0.143 cm−1). The effective atomic number (Zeff) follows the order B1 > A1 > A2 > A3 > A4. This order emphasizes that increasing the content of Bi2O3 has a positive effect on the photon shielding proficiencies owing to the higher density of Bi2O3 compared with Na2O. The half value layer (HVL) is also determined and the HVL for the tested glasses is computed between 0.106 and 0.958 cm at 0.0595 MeV. The glass with 10 mol% of Bi2O3 has lower HVL than the glasses with 0, 2.5, 5, and 7.5 mol% of Bi2O3. So, the A4 glass needs a smaller thickness than the other glasses to shield the same radiation. As a result of the reported shielding parameters, inserting B2O3 provides lower values of these three parameters, which in turn leads to the development of superior photons shields.


2010 ◽  
Vol 93-94 ◽  
pp. 71-74
Author(s):  
N. Chanthima ◽  
Jakrapong Kaewkhao ◽  
Weerapong Chewpraditkul ◽  
Pichet Limsuwan

Mass attenuation coefficient, total interaction cross-section and effective atomic number of xPbO:(100-x)SiO2, where 30 x 70 (% weight), glass system have been investigated at 662 keV on the basis of the mixture rule. The results are in good agreement with the theoretical values, calculated by WinXCom. The mass attenuation coefficient increases with PbO content, due to higher probability of photoelectric absorption in glass. However, Compton scattering gives dominant contribution to the total mass attenuation coefficient for the glass samples studied. The shielding properties of the glass samples are also better than ordinary shielding concretes and commercial window glasses. These results indicate that the glass systems prepared in this study has a potential to be used as radiation shielding materials.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sayed A. Waly ◽  
Ahmed M. Abdelreheem ◽  
Mohamed M. Shehata ◽  
Omayma A. Ghazy ◽  
Zakaria I. Ali

Abstract Radiation shielding composites based on polyvinyl chloride (PVC) reinforced with different weight ratios of Pb(NO3)2 (5, 10, and 20 wt%) were prepared using the solution-casting technique. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy, and tensile testing method were used to characterize the PVC composite films. FTIR and XRD investigations illustrate the structural change and modification of the as-prepared PVC composites. The morphological analysis of the composite revealed that Pb(NO3)2 was dispersed uniformly within PVC polymer matrix. TGA revealed that the incorporation of Pb(NO3)2 improved the thermal stability of the investigated composites, whereas adding Pb(NO3)2 to the polymer matrix worsened its tensile properties. The as-prepared composite films were investigated for radiation-shielding of gamma-rays radioactive point sources (241Am, 133Ba, 137Cs, and 60Co). Linear attenuation coefficient (μ, cm−1), mass attenuation coefficient (μ/ρ, cm2/g), and half-value layer (HVL, cm) have been estimated from the obtained data using the MicroShield program. Reasonable agreement was attended between theoretical and experimental results. The deviation between the experiment and theoretical values of mass attenuation coefficient is being to be lower than 9%, and this can be correlated to the good distribution of Pb(NO3)2. The results revealed that adding Pb(NO3)2 to PVC polymer composites improved their mass attenuation coefficient.


2014 ◽  
Vol 979 ◽  
pp. 426-430
Author(s):  
Narong Sangwaranatee ◽  
Jakrapong Kaewkhao ◽  
Natthakridta Chanthima

The total mass attenuation coefficient, partial photon interaction and effective atomic number of commercial window added with BaSO4in have been investigated at photon energy from 1 keV to 100 GeV on the basis of calculation. The theoretical values of total and partial interaction were obtained by the WinXCom software. The variations of mass attenuation coefficient and effective atomic number with photon energy are shown graphically. The results show that the variation of mass attenuation coefficient and effective atomic number has changed with photon energy and composition of window. It has been found that these parameters increase with increasing BaSO4concentrations, due to the increasing photoelectric absorption in glass samples. These results showed that the BaSO4can improve radiation shielding properties in commercial glass and useful for radiation shielding material design.


Sign in / Sign up

Export Citation Format

Share Document