scholarly journals Defense Gene Expression of Vigna radiata (L.) Wilczek., against Cercospora Leaf Spots (CLS)

Author(s):  
Deepak K. Koche ◽  
Arvind D. Chaudhary

Most cultivars of Vigna radiata (L) Wilczek grown in Indian subcontinent are susceptible to various biotic and abiotic stresses. Cercospora leaf spot (CLS) is a major biotic stress resulting in poor yield of this crop. Therefore, it is essential to investigate resistance status of different cultivars to CLS and develop effective strategy. Present investigation was focused on the role of biochemical compounds in resistance response of this crop to CLS in naturally grown population and after artificial induction with pathogen derived elicitor. The defense responses in vivo and in vitro were analyzed in the form of phytoalexin genestein, PAL and PR- proteins in their leaves. PR-proteins, PAL and genestein were assayed employing established protocols. In naturally grown population, four cultivars- Kopergaon, TARM-1, TARM-2 and TARM-18 showed lesser accumulation of genestein and lower level of PAL and PR- proteins. However, Pant M-3, ML-1037 and ML-936 showed resistant interaction with very high accumulation of genestein, PAL and PR proteins. Similar trends of accumulation of these biochemicals were observed in in vitro condition after elicitation with pathogen derived elicitor. The correlation study showed that the cultivars with lower defense related expression showed high disease incidence (51-61%) and with higher defense related expression were with less than 5% CLS incidence. It could be stated that PR-proteins, PAL and genestein has prominent role in defense mechanism of mungbean against CLS  as biochemical markers and further their utility in early screening for disease resistance of crop plants could be explored.

2011 ◽  
Vol 74 (5) ◽  
pp. 783-788 ◽  
Author(s):  
JIAQI YAN ◽  
JIAN LI ◽  
HONGWEI ZHAO ◽  
NI CHEN ◽  
JIANKANG CAO ◽  
...  

Effects of oligochitosan (OCH) on postharvest rot caused by Alternaria alternata in Chinese jujube (Zizyphus jujuba Mill. cv. Dongzao) fruit were investigated. An in vitro test indicated that mycelial growth of A. alternata was strongly suppressed by OCH at 0.5, 1, 2, 5, 10, 15, or 20 g/liter. The half-inhibition concentration of OCH against this fungus was 0.76 and 1.69 g/liter on days 4 and 6 of incubation, respectively. Lesion area and disease incidence in the jujube fruit inoculated with A. alternata were remarkably reduced by the OCH treatments at concentrations higher than 1 g/liter, but 5 g/liter OCH was considered the optimal treatment for inhibiting disease development. OCH also significantly reduced postharvest natural decay, promoted fruit firmness, delayed decline in soluble solids and loss of ascorbic acid, and increased total phenolic compounds during storage at 0°C and 85 to 95% relative humidity. Biochemical evaluations revealed that the activities of the main defense-related enzymes in the jujube fruit, including phenylalanine ammonia–lyase, peroxidase, chitinase, and β-1,3-glucanase, were significantly enhanced (P < 0.05) by OCH treatment. OCH increased superoxide dismutase activity but decreased catalase activity and, consequently, elevated hydrogen peroxide levels in the fruit. These results suggest that OCH might trigger several defense mechanisms in the jujube fruit for disease control in addition to its direct antifungal activity. OCH could be a viable alternative to conventional control of postharvest diseases of horticultural products.


2005 ◽  
Vol 73 (11) ◽  
pp. 7525-7534 ◽  
Author(s):  
Yolanda S. López-Boado ◽  
Laura M. Cobb ◽  
Rajendar Deora

ABSTRACT Motility is an important virulence phenotype for many bacteria, and flagellin, the monomeric component of flagella, is a potent proinflammatory factor. Of the three Bordetella species, Bordetella pertussis and Bordetella parapertussis are nonmotile human pathogens, while Bordetella bronchiseptica expresses flagellin and causes disease in animals and immunocompromised human hosts. The BvgAS two-component signal transduction system regulates phenotypic-phase transition (Bvg+, Bvg−, and Bvgi) in bordetellae. The Bvg− phase of B. bronchiseptica is characterized by the expression of flagellin and the repression of adhesins and toxins necessary for the colonization of the respiratory tract. B. bronchiseptica naturally infects a variety of animal hosts and constitutes an excellent model to study Bordetella pathogenesis. Using in vitro coculture models of bacteria and human lung epithelial cells, we studied the effects of B. bronchiseptica flagellin on host defense responses. Our results show that B. bronchiseptica flagellin is a potent proinflammatory factor that induces chemokine, cytokine, and host defense gene expression. Furthermore, we investigated receptor specificity in the response to B. bronchiseptica flagellin. Our results show that B. bronchiseptica flagellin is able to signal effectively through both human and mouse Toll-like receptor 5.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2336
Author(s):  
Saskia Windisch ◽  
Anja Walter ◽  
Narges Moradtalab ◽  
Frank Walker ◽  
Birgit Höglinger ◽  
...  

Soil-borne pathogens can severely limit plant productivity. Induced defense responses are plant strategies to counteract pathogen-related damage and yield loss. In this study, we hypothesized that benzoic acid and lettucenin A are involved as defense compounds against Rhizoctonia solani and Olpidium virulentus in lettuce. To address this hypothesis, we conducted growth chamber experiments using hydroponics, peat culture substrate and soil culture in pots and minirhizotrons. Benzoic acid was identified as root exudate released from lettuce plants upon pathogen infection, with pre-accumulation of benzoic acid esters in the root tissue. The amounts were sufficient to inhibit hyphal growth of R. solani in vitro (30%), to mitigate growth retardation (51%) and damage of fine roots (130%) in lettuce plants caused by R. solani, but were not able to overcome plant growth suppression induced by Olpidium infection. Additionally, lettucenin A was identified as major phytoalexin, with local accumulation in affected plant tissues upon infection with pathogens or chemical elicitation (CuSO4) and detected in trace amounts in root exudates. The results suggest a two-stage defense mechanism with pathogen-induced benzoic acid exudation initially located in the rhizosphere followed by accumulation of lettucenin A locally restricted to affected root and leaf tissues.


2000 ◽  
Vol 90 (10) ◽  
pp. 1173-1180 ◽  
Author(s):  
Ana R. D. C. F. De Ascensao ◽  
Ian A. Dubery

The biochemical basis of tolerance in banana to Fusarium wilt, caused by the pathogen Fusarium oxysporum f. sp. cubense race four, was investigated. Tissue culture banana plants from tolerant cv. Goldfinger and susceptible cv. Williams were maintained in a hydroponic system and inoculated with conidial suspensions to evaluate the degree of tolerance to susceptibility between the two clones and to investigate the effectiveness of this technique as a potential tool for early screening for resistance in breeding programs. Similarly, defense responses were induced by treatment of the plants with an elicitor preparation from the mycelial cell walls of the pathogen. Differences in the induction of lignin and callose deposition, phenolics, and the enzymes involved in cell wall strengthening; phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase, peroxidase, and polyphenol oxidase were determined. Root tissue of the tolerant cv. Goldfinger responded to the fungal elicitor through the strong deposition of lignin, preceded by the induction or activation of the enzyme activities involved in the synthesis and polymerization thereof, whereas only slight increases were observed for the susceptible cv. Williams. No increase in callose content was observed for either clone. These results indicate an important role for cell wall strengthening due to the deposition of lignin as an inducible defense mechanism of banana roots against F. oxysporum f. sp. cubense race four.


2017 ◽  
Author(s):  
Lotte Caarls ◽  
Joyce Elberse ◽  
Mo Awwanah ◽  
Nora R. Ludwig ◽  
Michel de Vries ◽  
...  

ABSTRACTThe phytohormone jasmonic acid (JA) is vital in plant defense and development. Although biosynthesis of JA and activation of JA-responsive gene expression by the bioactive form JA-isoleucine (JA-Ile) have been well-studied, knowledge on JA metabolism is incomplete. In particular, the enzyme that hydroxylates JA to 12-OH-JA, an inactive form of JA that accumulates after wounding and pathogen attack, is unknown. Here, we report the identification of four paralogous 2-oxoglutarate/Fe(II)-dependent oxygenases in Arabidopsis thaliana as JA hydroxylases and show that they down-regulate JA-dependent responses. As they are induced by JA we named them JASMONATE-INDUCED OXYGENASEs (JOXs). Concurrent mutation of the four genes in a quadruple Arabidopsis mutant resulted in increased defense gene expression and increased resistance to the necrotrophic fungus Botrytis cinerea and the caterpillar Mamestra brassicae. In addition, root and shoot growth of the plants was inhibited. Metabolite analysis of leaves showed that loss of function of the four JOX enzymes resulted in over-accumulation of JA and in reduced turnover of JA into 12-OH-JA. Transformation of the quadruple mutant with each JOX gene strongly reduced JA levels, demonstrating that all four JOXs inactivate JA in plants. The in vitro catalysis of 12-OH-JA from JA by recombinant enzyme could be confirmed for three JOXs. The identification of the enzymes responsible for hydroxylation of JA reveals a missing step in JA metabolism, which is important for the inactivation of the hormone and subsequent down-regulation of JA-dependent defenses.SIGNIFICANCE STATEMENTIn plants, the hormone jasmonic acid (JA) is synthesized in response to attack by pathogens and herbivores, leading to activation of defense responses. Rapidly following JA accumulation, the hormone is metabolized, presumably to prevent inhibitive effects of high JA levels on growth and development. The enzymes that directly inactivate JA were so far unknown. Here, we identify four jasmonate-induced oxygenases (JOXs) in Arabidopsis that hydroxylate jasmonic acid to form inactive 12-OH-JA. A mutant that no longer produces the four enzymes hyperaccumulates JA, exhibits reduced growth, and is highly resistant to attackers that are sensitive to JA-dependent defense. The JOX enzymes thus play an important role in determining the amplitude and duration of JA responses to balance the growth-defense tradeoff.


2003 ◽  
Vol 93 (12) ◽  
pp. 1505-1512 ◽  
Author(s):  
Sara Monteiro ◽  
Mahmoud Barakat ◽  
Maria A. Piçarra-Pereira ◽  
Artur R. Teixeira ◽  
Ricardo B. Ferreira

Little information is available concerning the expression of pathogenesis-related (PR) proteins in grapevine (Vitis vinifera) and their effect properties on the major fungal pathogens of grape. A systematic study was performed on the effect of total or individual grape proteins on mycelial growth, spore germination, and germ tube growth of Uncinula necator, Phomopsis viticola, and Botrytis cinerea. Two proteins, identified as PR proteins by immunological methods and by N-terminal sequencing as osmotin and thaumatin-like protein, exhibited strong antifungal activities in vitro, blocking the growth of Phomopsis viticola and Botrytis cinerea mycelia. In addition, they inhibited spore germination and germ tube growth of U. necator, Phomopsis viticola, and Botrytis cinerea. The presence of both proteins displayed a synergistic effect. The expression of osmotin and thaumatin-like protein was induced in grapevine leaves and berries infected with U. necator and Phomopsis viticola. Thaumatin previously was thought to occur exclusively in berries. Immunoblot analyses revealed the accumulation of the two PR proteins in infected leaves and berries, supporting a role in vivo in increasing the resistance of grapevine to fungal attack.


2021 ◽  
Author(s):  
Nathalie D Lackus ◽  
Axel Schmidt ◽  
Jonathan Gershenzon ◽  
Tobias G Köllner

AbstractBenzenoids (C6–C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6–C3). The biosynthesis of C6–C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6–C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.


2021 ◽  
Vol 9 (2) ◽  
pp. 379
Author(s):  
Breanne M. Head ◽  
Christopher I. Graham ◽  
Teassa MacMartin ◽  
Yoav Keynan ◽  
Ann Karen C. Brassinga

Legionnaires’ disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.


2020 ◽  
Vol 22 (1) ◽  
pp. 202
Author(s):  
Josephin Glück ◽  
Julia Waizenegger ◽  
Albert Braeuning ◽  
Stefanie Hessel-Pras

Pyrrolizidine alkaloids (PAs) are a group of secondary metabolites produced in various plant species as a defense mechanism against herbivores. PAs consist of a necine base, which is esterified with one or two necine acids. Humans are exposed to PAs by consumption of contaminated food. PA intoxication in humans causes acute and chronic hepatotoxicity. It is considered that enzymatic PA toxification in hepatocytes is structure-dependent. In this study, we aimed to elucidate the induction of PA-induced cell death associated with apoptosis activation. Therefore, 22 structurally different PAs were analyzed concerning the disturbance of cell viability in the metabolically competent human hepatoma cell line HepaRG. The chosen PAs represent the main necine base structures and the different esterification types. Open-chained and cyclic heliotridine- and retronecine-type diesters induced strong cytotoxic effects, while treatment of HepaRG with monoesters did not affect cell viability. For more detailed investigation of apoptosis induction, comprising caspase activation and gene expression analysis, 14 PA representatives were selected. The proapoptotic effects were in line with the potency observed in cell viability studies. In vitro data point towards a strong structure–activity relationship whose effectiveness needs to be investigated in vivo and can then be the basis for a structure-associated risk assessment.


Sign in / Sign up

Export Citation Format

Share Document