scholarly journals Physicochemical Properties of Soil under Different Forest Types in the Western Ramganga Valley (Uttarakhand Himalaya, India)

2021 ◽  
pp. 1-14
Author(s):  
Dinesh Singh Rawat ◽  
Deep Shekhar Das ◽  
Prabhawati Tiwari ◽  
Preeti Naithani ◽  
Jay Krishan Tiwari

The physicochemical properties of soils of six forests varying in elevation (lower, middle, and upper), slope, aspects, and floristic composition viz. L1 (Oak mixed), L2 (Chir pine), M1 (Rhododendron mixed), M2 (Rhododendron mixed), U1 (Abies mixed) and U2 (Abies mixed) from Western Ramganga Valley (Chamoli, Uttarakhand Himalaya, India) were scrutinized. The composite soil samples from three depths (0–10 cm, 11–20 cm, and 21–30 cm) were collected during the different seasons and the physicochemical parameters were analyzed using standard manual and protocol. Texture, bulk density, moisture content, water holding capacity, organic matter, organic carbon, pH, nitrogen content, available phosphorus, exchangeable potassium and C:N ratio of soil samples from each forest site were analyzed and discussed. It was observed that the physical properties of soils either do not vary across the three depths (0–10 cm, 11–20 cm, and 21–30 cm) or show slight changes whereas chemical properties show notable variations comparatively. The significant variation (ANOVA, P < 0.05) was observed in the soil texture (sand, silt, and clay contents), moisture content, water holding capacity, and nitrogen content across the six forest types (study sites). The soil texture ranged between loam and sandy loam which is considered supportive for plant growth. Besides, the lower bulk density and higher soil organic carbon and organic matter with other determined parameters in the studied soils indicate that the studied six forests have sustained nutritive soils. It can be concluded from the present results that the soil physicochemical properties vary with changes in the vegetation composition (forest types) at different elevations in Western Himalaya. Further elaborative study will be done to ascertain interrelationship among the vegetation and soils.

Diversity ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 134 ◽  
Author(s):  
Lenka Bobuľská ◽  
Lenka Demková ◽  
Andrea Čerevková ◽  
Marek Renčo

A giant goldenrod plant, Solidago gigantea, native to North America is rapidly spreading in Europe and may have serious impact on ecosystems that inhabit. There is a lack of information about the effects of this species on soil biochemical properties and distribution and activity of microbial community. We analyzed soil physicochemical properties (soil reaction, soil moisture content, organic carbon and total nitrogen content) associated with activity of microbial population (activity of fluorescein diacetate (FDA), beta-glucosidase, urease and phosphatases enzymes) between invaded and adjacent uninvaded control sites in two habitats, forest and grassland, in the lowland of southeast Slovakia during years 2016 and 2017. The results revealed that invasion of S. gigantea significantly altered several soil properties and is associated with different soil properties. Soil acidity increased, organic carbon and moisture content decreased, while total nitrogen content was not significantly affected by invasion. FDA and urease activity were significantly higher in uninvaded sites. In contrast, beta-glucosidase and alkaline phosphatase activity were enhanced by S. gigantea invasion in both ecosystems studied. Acid phosphatase was not affected by the invasion. Our study proved that S. gigantea can influence several soil microbial properties while others remained unaffected, despite its significant impact on basal soil physicochemical properties.


1954 ◽  
Vol 2 (1) ◽  
pp. 50-57
Author(s):  
J. Van Schuylenborgh

Air drying of mountain soils (weakly podzolized brown forest types) which developed under a humid tropical climate appreciably increased the coarser fractions and decreased the finer fractions and the consistency values (plastic number, sticky point, etc.) of the samples. It appears that silicic-acid gels in these soils underwent an irreversible dehydration and exerted a vigourous cementing action on the soil particles. By this mechanism, and possibly due to some change in the nature of the organic matter, the characteristics of air-dried soils changed from that of a plastic clay to a coarse to medium sand of considerably lower water-holding capacity. Results suggest that samples of tropical soils of humid climates in particular should be analysed in their original moist state. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7451
Author(s):  
Barbara Breza-Boruta ◽  
Karol Kotwica ◽  
Justyna Bauza-Kaszewska

Properly selected tillage methods and management of the available organic matter resources are considered important measures to enable farming in accordance with the principles of sustainable agriculture. Depending on the depth and intensity of cultivation, tillage practices affect soil chemical composition, structure and biological activity. The three-year experiment was performed on the soil under spring wheat (cv. Tybalt) short-time cultivation. The influence of different tillage systems and stubble management on the soil’s chemical and biological parameters was analyzed. Organic carbon content (OC); content of biologically available phosphorus (Pa), potassium (Ka), and magnesium (Mg); content of total nitrogen (TN), mineral nitrogen forms: N-NO3 and N-NH4 were determined in various soil samples. Moreover, the total number of microorganisms (TNM), bacteria (B), actinobacteria (A), fungi (F); soil respiratory activity (SR); and pH in 1 M KCl (pH) were also investigated. The results show that organic matter amendment is of greater influence on soil characteristics than the tillage system applied. Manure application, as well as leaving the straw in the field, resulted in higher amounts of organic carbon and biologically available potassium. A significant increase in the number of soil microorganisms was also observed in soil samples from the experimental plots including this procedure.


2021 ◽  
Author(s):  
Magdalena Banach-Szott ◽  
Andrzej Dziamski

Abstract The aim of the research has been to determine the effect of many-year irrigation of unique grasslands on the properties of humic acids defining the quality of organic matter. The research was performed based on the soil (Albic Brunic Arenosol, the A, AE and Bsv horizons) sampled from Europe’s unique complex of permanent grasslands irrigated continuously for 150 years, applying the slope-and-flooding system; the Czerskie Meadows. The soil samples were assayed for the content of total organic carbon (TOC) and the particle size distribution. HAs were extracted with the Schnitzer method and analysed for the elemental composition, spectrometric parameters in the UV-VIS range, hydrophilic and hydrophobic properties and the infrared spectra were produced. The research results have shown that the HAs properties depended on the depth and the distance from the irrigation ditch. The HAs of the A horizon of the soils were identified with a lower “degree of maturity”, as reflected by the values of atomic ratios (H/C, O/C, O/H), absorbance coefficients, and the FT-IR spectra, as compared with the HAs of the Bsv horizon. The HAs molecules of the soils sampled furthest from the irrigation ditch were identified with a higher degree of humification, as compared with the HAs of the soils sampled within the closest distance. The results have demonstrated that many-year grassland irrigation affected the structure and the properties of humic acids.


Soil Research ◽  
1995 ◽  
Vol 33 (6) ◽  
pp. 975 ◽  
Author(s):  
A Golchin ◽  
P Clarke ◽  
JM Oades ◽  
JO Skjemstad

Soil samples were obtained from the surface horizons of five untilled sites and adjacent sites under short- and long-term cultivation. The soil samples were fractionated based on density and organic materials were concentrated in various fractions which enabled comparative chemical composition of the organic materials in cultivated and uncultivated sites by solid-state C-13 CP/MAS NMR spectroscopy. Changes in the nature of organic carbon with cultivation were different in different soils and resulted from variations in the chemistry of carbon inputs to the soils and a greater extent of decomposition of organic materials in cultivated soils. Differences in the chemical composition of organic carbon between cultivated and uncultivated soils resided mostly in organic materials occluded within aggregates, whereas the chemistry of organic matter associated with clay particles showed only small changes. The results indicate a faster decomposition of O-alkyl C in the cultivated soils. Wet aggregate stability, mechanically dispersible clay and modulus of rupture tests were used to assess the effects of cultivation on structural stability of soils. In four of five soils, the virgin sites and sites which had been under long-term pasture had a greater aggregate stability than the cultivated sites. Neither total organic matter nor total O-alkyl C content was closely correlated with aggregate stability, suggesting that only a part of soil carbon or carbohydrate is involved in aggregate stability. The fractions of carbon and O-alkyl C present in the form of particulate organic matter occluded within aggregates were better correlated with aggregate stability (r = 0.86** and 0.88**, respectively). Cultivation was not the dominant factor influencing water-dispersible clay across the range of soil types used in this study. The amount of dispersible clay was a function of total clay content and the percentage of clay dispersed was controlled by factors such as clay mineralogy, CaCO3 and organic matter content of soils. The tendency of different soils for hard-setting and crusting, as a result of structural collapse, was reflected in the modulus of rupture (MOR). The cultivated sites had significantly higher MOR than their non-tilled counterparts. The soils studied had different MOR due to differences in their physical and chemical properties.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 532 ◽  
Author(s):  
Wenxiang Zhou ◽  
Guilin Han ◽  
Man Liu ◽  
Jie Zeng ◽  
Bin Liang ◽  
...  

The profile distributions of soil organic carbon (SOC), soil organic nitrogen (SON), soil pH and soil texture were rarely investigated in the Lancangjiang River Basin. This study aims to present the vertical distributions of these soil properties and provide some insights about how they interact with each other in the two typical soil profiles. A total of 56 soil samples were collected from two soil profiles (LCJ S-1, LCJ S-2) in the Lancangjiang River Basin to analyze the profile distributions of SOC and SON and to determine the effects of soil pH and soil texture. Generally, the contents of SOC and SON decreased with increasing soil depth and SOC contents were higher than SON contents (average SOC vs. SON content: 3.87 g kg−1 vs. 1.92 g kg−1 in LCJ S-1 and 5.19 g kg−1 vs. 0.96 g kg−1 in LCJ S-2). Soil pH ranged from 4.50 to 5.74 in the two soil profiles and generally increased with increasing soil depth. According to the percentages of clay, silt, and sand, most soil samples can be categorized as silty loam. Soil pH values were negatively correlated with C/N ratios (r = −0.66, p < 0.01) and SOC contents (r = −0.52, p < 0.01). Clay contents were positively correlated with C/N ratios (r = 0.43, p < 0.05) and SOC contents (r = 0.42, p < 0.01). The results indicate that soil pH and clay are essential factors influencing the SOC spatial distributions in the two soil profiles.


Solid Earth ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Bülent Turgut ◽  
Merve Ateş

Abstract. The aim of this study was to determine certain basic properties of soils in the Batumi delta (southwestern Georgia) to determine the relationships of studied properties and to identify differences with regards to these properties between different sampling sites in the delta that were selected based on the delta morphology. In this context, a total of 125 soil samples were collected from five different sampling sites, and the clay, silt and sand content of the samples were determined along with their mean weight diameter (MWD) values, aggregate stability (AS) values, amount of water retained under −33 (FC) and −1500 kPa (WP) pressure and organic matter (OM) content. Correlation analysis indicated that clay content and OM were positively correlated with MWD, and OM was positively correlated with AS. However, the sand content was found to be negatively correlated with MWD. In addition, clay, silt and OM content were positive correlated with FC and WP. Variance analysis results determined statistically significant differences between the sampling sites with respect to all of the evaluated properties. The active delta section of the study area was characterized by high sand content, while the lower delta plain was characterized by high OM and AS values, and the upper delta plain was characterized by high MWD values, high FC and WP moisture content levels and high clay and silt content. In conclusion, it was demonstrated that the examined properties were significantly affected by the different morphological positions and usages of these different areas. These results may help with the management of agricultural lands in the Batumi delta, which has never been studied before.


2008 ◽  
Vol 51 (2) ◽  
pp. 263-269 ◽  
Author(s):  
Silmara R. Bianchi ◽  
Mario Miyazawa ◽  
Edson L. de Oliveira ◽  
Marcos Antonio Pavan

The quantity of soil organic matter (SOM) was estimated through the determination of soil organic carbon (SOC) times a factor, which assumes that 58% of the SOM was formed by carbon. A number of soil samples with wide range of SOC content collected in the state of Paraná, Brazil were evaluated in the laboratory. SOC was measured by Walkley-Black method and the total SOM by loss on ignition. The SOC was positively correlated with SOM. The SOM/SOC ratio varied from 1.91 to 5.08 for the soils. It shows that Brazilian SOM has greater oxidation degree. Although, the SOM and SOC decreased with soil depth the SOM/SOC ratio increased. It showed that SOM in the subsoil contained more oxygen but less carbon than the SOM in the upper soil surface. The CEC/SOC also increased with depth indicating that the functional groups of the SOM increased per unity of carbon.


Soil Research ◽  
1999 ◽  
Vol 37 (1) ◽  
pp. 151 ◽  
Author(s):  
J. O. Skjemstad ◽  
J. A. Taylor ◽  
L. J. Janik ◽  
S. P. Marvanek

Comparisons of soil samples from virgin sites or sites recently planted to sugarcane (new) with sites that had been under cane production for many years (old) were made to investigate the potential impact of cane production on soil organic carbon (OC) levels and chemistry. The comparisons showed that very little change had occurred in total OC and in ‘light’ fraction (<1·6 Mg/m3). Increasing pyrophosphate extractability throughout the profile at some sites, as a result of cultivation, however, suggested that the organic matter generally became more ‘humified’ with long-term cane production. Evidence is presented for a redistribution of OC within profiles under cane production. Old, well-established cane sites had soils with lower OC levels in the surface horizons and higher levels in the subsoils relative to new sites. The overall chemistry of the soil organic matter, as indicated by solid state 13C nuclear magnetic resonance spectroscopy, did not change significantly at each site even though between site differences were large. Some soils contained substantial amounts of charcoal which was of pre-cane origin. In some of the coarse-textured soils, smaller amounts of charcoal produced during the burning of cane appeared to accumulate below the A1 horizons in the profiles. It also appeared likely that the redistribution of carbon in the upper horizons of some soils resulted from the movement of charcoal within the profile, probably as a result of tillage.


2017 ◽  
Vol 2 (4) ◽  
pp. 664-671
Author(s):  
Md Abdullah Miah ◽  
Nazia Uddin ◽  
Md Mahbubul Hoque ◽  
Md Erfanul Haq ◽  
Ajay Kumar Biswas

An experiment was conducted to examine the physicochemical properties of soil at Habla union under Basail upazila in Tangail based on the BINA (Bangladesh Institute of Nuclear Agriculture) laboratory analysis of physical and chemical parameters during January to March, 2014. Total 30 soil samples from 10 points of Habla union were collected from 0-15 cm, 15-30 cm, and 30-40 cm depth of the soil respectively. To determine the soil texture the results were compared with the standard value of SRDI and BARC. Among the 30 soil samples, 25 soils texture classes were found sandy clay loam, 4 were sandy clay and rest one was clay loam. The comparative analysis showed that the average texture class is sandy clay loam. The bulk density ranged from1.23 to 1.91 g/cm3 for the total samples which leads to decide that bulk density is gradually increasing with soil depth. The moisture percentage at different depth of soil were 39.23 to 57.23 % (for 0-15 cm), 43.02 to 58.35 % (for 15-30 cm) and 42.08 to 58.24% (for 30-45 cm).The pH obtained from soil samples of the study area were 4.66 to 5.55 (for 0-15cm), 5.37 to 6.18(for 15-30cm), 6.33to 6.60 (for 30-45 cm). The percentage of organic matter of the soil samples were 0.55 to 3.97 % (for 0-15cm), 0.55 to 3.24 % (for 15-30cm), 0.69 to 2.28 % (for 30-45cm).The organic matter content in the surface soil is relatively low compared to standard level that decreases steadily with depth. The percentage of nitrogen (N %) was observed in different depth of the soil were 0.078 to 0.126 % (for 0-15 cm), 0.049 to 0.126 % (for 15-30 cm), to 0.074 % (for 30-45 cm) which revealed that the percentages of total nitrogen were fall with the depth compared to standard level. In different depth of soil, it was observed that the level of phosphorus (P) was very low compared to standard level where the phosphorus (P) concentration of the soil samples were 1.18 to 2.90 mg/kg (for 0-15 cm), 1.30 to 9.95 mg/kg (for 15-30 cm), 1.58 to 10.92 mg/kg (for 30-45 cm). On the other hand, it was observed that the sulfur (S) concentration was increased with the depth of soil compared to standard level. The sulfur (S) concentration of the soil samples were 5.21 to 11.98 mg/kg (for 0-15 cm), 5.37 to 14.16 mg/kg (15-30 cm), 9.03 to 15.09 mg/kg (30-45 cm). The potassium (K) concentration of the soil samples were 0.038 to 0.102 mg/kg (for 0-15 cm), 0.031 to 0.90 mg/kg (for 15-30 cm) 0.055 to 0.171 mg/kg (for 30-45 cm), which indicated that the low K content compared to the standard level. The overall physicochemical parameter of soil samples were not optimum for good agricultural production. As we know all the parameters either directly or indirectly influence the soil fertility and productivity. This was probably the reason for low productivity of soil in the study area.Asian J. Med. Biol. Res. December 2016, 2(4): 664-671


Sign in / Sign up

Export Citation Format

Share Document