scholarly journals Effect of Centrifugal Force on a Porous Anisotropic Medium in Rotation, Saturated by a Non-Newtonian Fluid

Author(s):  
Vodounnou Edmond Claude ◽  
Ahouannou Clément ◽  
Semassou Guy Clarence ◽  
Sanya A. Emile ◽  
Dègan Gérard

The present study deals with the linear stability of an anisotropic porous medium in rotation, saturated by a non-Newtonian fluid in a rectangular cavity heated on the side, subjected to the effect of the centrifugal force. The state of marginal stability is established by determining the critical Rayleigh number and the critical wave number. We have observed the effect of the parameters  and  of the anisotropy on the convection threshold.

1999 ◽  
Author(s):  
Pouya Amili ◽  
Yanis C. Yortsos

Abstract We study the linear stability of a two-phase heat pipe zone (vapor-liquid counterflow) in a porous medium, overlying a superheated vapor zone. The competing effects of gravity, condensation and heat transfer on the stability of a planar base state are analyzed in the linear stability limit. The rate of growth of unstable disturbances is expressed in terms of the wave number of the disturbance, and dimensionless numbers, such as the Rayleigh number, a dimensionless heat flux and other parameters. A critical Rayleigh number is identified and shown to be different than in natural convection under single phase conditions. The results find applications to geothermal systems, to enhanced oil recovery using steam injection, as well as to the conditions of the proposed Yucca Mountain nuclear waste repository. This study complements recent work of the stability of boiling by Ramesh and Torrance (1993).


1967 ◽  
Vol 30 (3) ◽  
pp. 465-478 ◽  
Author(s):  
Stephen H. Davis

The linear stability of a quiescent, three-dimensional rectangular box of fluid heated from below is considered. It is found that finite rolls (cells with two non-zero velocity components dependent on all three spatial variables) with axes parallel to the shorter side are predicted. When the depth is the shortest dimension, the cross-sections of these finite rolls are near-square, but otherwise (in wafer-shaped boxes) narrower cells appear. The value of the critical Rayleigh number and preferred wave-number (number of finite rolls) for a given size box is determined for boxes with horizontal dimensions h, ¼ ≤ h/d ≤ 6, where d is the depth.


1967 ◽  
Vol 30 (1) ◽  
pp. 33-49 ◽  
Author(s):  
P. H. Roberts

A theoretical study has been made of an experiment by Tritton & Zarraga (1967) in which eonvective motions were generated in a horizontal layer of water (cooled from above) by the application of uniform heating. The marginal stability problem for such a layer is solved, and a critical Rayleigh number of 2772 is obtained, at which patterns of wave-number 2·63 times the reciprocal depth of the layer are marginally stable.The remainder of the paper is devoted to the finite amplitude convection which ensues when the Rayleigh number, R, exceeds 2772. The theory is approximate, the basic simplification being that, to an adequate approximation, Fourier decompositions of the convective motions in the horizontal (x, y) directions can be represented by their dominant (planform) terms alone. A discussion is given of this hypothesis, with illustrations drawn from the (better studied) Bénard situation of convection in a layer heated below, cooled from above, and containing no heat sources. The hypothesis is then used to obtain ‘mean-field equations’ for the convection. These admit solutions of at least three distinct forms: rolls, hexagons with upward flow at their centres, and hexagons with downward flow at their centres. Using the hypothesis again, the stability of these three solutions is examined. It is shown that, for all R, a (neutrally) stable form of convection exists in the form of rolls. The wave-number of this pattern increases gradually with R. This solution is, in all respects, independent of Prandtl number. It is found, numerically, that the hexagons with upward motions in their centres are unstable, but that the hexagons with downward motions at their centres are completely stable, provided R exceeds a critical value (which depends on Prandtl number, P, and which for water is about 3Rc), and provided the wave-number of the pattern lies within certain limits dependent on R and P.


Author(s):  
Saneshan Govender

In both pure fluids and porous media, the density gradient becomes unstable and fluid motion (convection) occurs when the critical Rayleigh number is exceeded. The classical stability analysis no longer applies if the Rayleigh number is time dependant, as found in systems where the density gradient is subjected to vibration. The influence of vibrations on thermal convection depends on the orientation of the time dependant acceleration with respect to the thermal stratification. The problem of a vibrating porous cylinder has numerous important engineering applications, the most important one being in the field of binary alloy solidification. In particular we may extend the above results to understanding the dynamics in the mushy layer (essentially a reactive porous medium) that is sandwiched between the underlying solid and overlying melt regions. Alloyed components are widely used in demanding and critical applications, such as turbine blades, and a consistent internal structure is paramount to the performance and integrity of the component. Alloys are susceptible to the formation of vertical channels which are a direct result of the presence convection, so any technique that suppresses convection/the formation of channels would be welcomed by the plant metallurgical engineer. In the current study, the linear stability theory is used to investigate analytically the effects of gravity modulation on convection in a homogeneous cylindrical porous layer heated from below. The linear stability results show that increasing the frequency of vibration stabilizes the convection. In addition the aspect ratio of the porous cylinder is shown to influence the stability of convection for all frequencies analysed. It was also observed that only synchronous solutions are possible in cylindrical porous layers, with no transition to sub harmonic solutions as was the case in Govender (2005a) for rectangular layers or cavities. The results of the current analysis will be used in the formulation of a model for binary alloy systems that includes the reactive porous medium model.


1997 ◽  
Vol 350 ◽  
pp. 271-293 ◽  
Author(s):  
PAUL MATTHEWS ◽  
STEPHEN COX

In many geophysical and astrophysical contexts, thermal convection is influenced by both rotation and an underlying shear flow. The linear theory for thermal convection is presented, with attention restricted to a layer of fluid rotating about a horizontal axis, and plane Couette flow driven by differential motion of the horizontal boundaries.The eigenvalue problem to determine the critical Rayleigh number is solved numerically assuming rigid, fixed-temperature boundaries. The preferred orientation of the convection rolls is found, for different orientations of the rotation vector with respect to the shear flow. For moderate rates of shear and rotation, the preferred roll orientation depends only on their ratio, the Rossby number.It is well known that rotation alone acts to favour rolls aligned with the rotation vector, and to suppress rolls of other orientations. Similarly, in a shear flow, rolls parallel to the shear flow are preferred. However, it is found that when the rotation vector and shear flow are parallel, the two effects lead counter-intuitively (as in other, analogous convection problems) to a preference for oblique rolls, and a critical Rayleigh number below that for Rayleigh–Bénard convection.When the boundaries are poorly conducting, the eigenvalue problem is solved analytically by means of an asymptotic expansion in the aspect ratio of the rolls. The behaviour of the stability problem is found to be qualitatively similar to that for fixed-temperature boundaries.Fully nonlinear numerical simulations of the convection are also carried out. These are generally consistent with the linear stability theory, showing convection in the form of rolls near the onset of motion, with the appropriate orientation. More complicated states are found further from critical.


1998 ◽  
Vol 4 (2) ◽  
pp. 73-90 ◽  
Author(s):  
Peter Vadasz ◽  
Saneshan Govender

The stability and onset of two-dimensional convection in a rotating fluid saturated porous layer subject to gravity and centrifugal body forces is investigated analytically. The problem corresponding to a layer placed far away from the centre of rotation was identified as a distinct case and therefore justifying special attention. The stability of a basic gravity driven convection is analysed. The marginal stability criterion is established in terms of a critical centrifugal Rayleigh number and a critical wave number for different values of the gravity related Rayleigh number. For any given value of the gravity related Rayleigh number there is a transitional value of the wave number, beyond which the basic gravity driven flow is stable. The results provide the stability map for a wide range of values of the gravity related Rayleigh number, as well as the corresponding flow and temperature fields.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
M. J. Kohl ◽  
M. Kristoffersen ◽  
F. A. Kulacki

Experiments are reported on initial instability, turbulence, and overall heat transfer in a porous medium heated from below. The porous medium comprises either water or a water-glycerin solution and randomly stacked glass spheres in an insulated cylinder of height:diameter ratio of 1.9. Heating is with a constant flux lower surface and a constant temperature upper surface, and the stability criterion is determined for a step heat input. The critical Rayleigh number for the onset of convection is obtained in terms of a length scale normalized to the thermal penetration depth as Rac=83/(1.08η−0.08η2) for 0.02<η<0.18. Steady convection in terms of the Nusselt and Rayleigh numbers is Nu=0.047Ra0.91Pr0.11(μ/μ0)0.72 for 100<Ra<5000. Time-averaged temperatures suggest the existence of a unicellular axisymmetric flow dominated by upflow over the central region of the heated surface. When turbulence is present, the magnitude and frequency of temperature fluctuations increase weakly with increasing Rayleigh number. Analysis of temperature fluctuations in the fluid provides an estimate of the speed of the upward moving thermals, which decreases with distance from the heated surface.


1987 ◽  
Vol 109 (3) ◽  
pp. 677-682 ◽  
Author(s):  
G. Pillatsis ◽  
M. E. Taslim ◽  
U. Narusawa

A linear stability analysis is performed for a horizontal Darcy porous layer of depth 2dm sandwiched between two fluid layers of depth d (each) with the top and bottom boundaries being dynamically free and kept at fixed temperatures. The Beavers–Joseph condition is employed as one of the interfacial boundary conditions between the fluid and the porous layer. The critical Rayleigh number and the horizontal wave number for the onset of convective motion depend on the following four nondimensional parameters: dˆ ( = dm/d, the depth ratio), δ ( = K/dm with K being the permeability of the porous medium), α (the proportionality constant in the Beavers–Joseph condition), and k/km (the thermal conductivity ratio). In order to analyze the effect of these parameters on the stability condition, a set of numerical solutions is obtained in terms of a convergent series for the respective layers, for the case in which the thickness of the porous layer is much greater than that of the fluid layer. A comparison of this study with the previously obtained exact solution for the case of constant heat flux boundaries is made to illustrate quantitative effects of the interfacial and the top/bottom boundaries on the thermal instability of a combined system of porous and fluid layers.


1996 ◽  
Vol 326 ◽  
pp. 399-415 ◽  
Author(s):  
M. Wanschura ◽  
H. C. Kuhlmann ◽  
H. J. Rath

The stability of steady axisymmetric convection in cylinders heated from below and insulated laterally is investigated numerically using a mixed finite-difference/Chebyshev collocation method to solve the base flow and the linear stability equations. Linear stability boundaries are given for radius to height ratios γ from 0.9 to 1.56 and for Prandtl numbers Pr = 0.02 and Pr = 1. Depending on γ and Pr, the azimuthal wavenumber of the critical mode may be m = 1, 2, 3, or 4. The dependence of the critical Rayleigh number on the aspect ratio and the instability mechanisms are explained by analysing the energy transfer to the critical modes for selected cases. In addition to these results the onset of buoyant convection in liquid bridges with stress-free conditions on the cylindrical surface is considered. For insulating thermal boundary conditions, the onset of convection is never axisymmetric and the critical azimuthal wavenumber increases monotonically with γ. The critical Rayleigh number is less then 1708 for most aspect ratios.


1984 ◽  
Vol 106 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M. Kaviany

The onset of convection due to a nonlinear and time-dependent temperature stratification in a saturated porous medium with upper and lower free surfaces is considered. The initial parabolic temperature distribution is due to uniform internal heating. The medium is then cooled by decreasing the upper surface temperature linearly with time. Linear stability theory is applied to the more formally developed governing equations. In order to obtain an asymptotic solution for transient problems involving very long time scales, the critical Rayleigh number for steady-state, nonlinear temperature distribution is also obtained. The effects of porosity, permeability, and Prandtl number on the time of the onset of convection are examined. The steady-state results show that the critical Rayleigh number depends only on the ratio of porosity to permeability and when this ratio exceeds a value of one thousand, the critical Rayleigh number is directly proportional to this ratio.


Sign in / Sign up

Export Citation Format

Share Document