Efficacy of calcium chloride and arginine foliar spray in alleviating terminal heat stress in late-sown wheat (Triticum aestivum L.)

2019 ◽  
Vol 157 (6) ◽  
pp. 537-549
Author(s):  
A. Roy Chowdhury ◽  
M. Ghosh ◽  
M. Lal ◽  
A. Pal ◽  
K. K. Hazra ◽  
...  

AbstractTerminal heat stress leads to sizeable yield loss in late-sown wheat in tropical environments. Several synthetic compounds are known to counteract plant stress emanating from abiotic factors. A field experiment was conducted in Sabour (eastern India) during 2013–2016 to investigate the field efficacy of two synthetic compounds, calcium chloride (CaCl2) and arginine, for improving grain yield of two contrasting wheat cultivars (DBW 14 and K 307) facing terminal heat stress. For this, foliar spray of 18.0 mM CaCl2 at booting (CCB) or anthesis (CCA), 9.0 mM CaCl2 at both booting and anthesis (CCB+A), 2.5 mM arginine at booting (ARGB) or anthesis (ARGA) and 1.25 mM arginine at both booting and anthesis (ARGB+A) treatments along with no-spray and water-spray treatments were evaluated in late-sown wheat. The highest grain yield was recorded in treatment CCB+A, followed by CCA and ARGB+A. However, the effect of these compounds was marginal on grain yield when applied only at the booting stage. Grains/ear and thousand-grain weight were found to be the critical determinants for yield in late-sown wheat. During the anthesis to grain filling period, flag-leaf chlorophyll degradation and increase in relative permeability in no-spray treatment were 34–36% and 29–52%, respectively, but these values were reduced considerably in CCB+A treatment followed CCA. Thus, foliar spray of 9.0 mM CaCl2 both at booting and anthesis stages may be recommended for alleviating the negative impacts of terminal heat stress in late-sown wheat and improving its productivity (>13%).

Author(s):  
Amrita Kumari ◽  
R. D. Ranjan ◽  
Chandan Roy ◽  
Awadesh Kumar Pal ◽  
S. Kumar

Heat stress, particularly the stress appears at the time of flowering to grain filling stages causing severe yield loss in wheat. Heat tolerance is complex phenomena that include adjustment in morphological, physiological and biochemical traits of the crop. Present investigation was carried out to understand the effect of terminal heat stress on different traits of wheat. The experiment was conducted in three dates of sowing as timely sown, late sown and very late sown to expose the crop to heat stress at later stages of the crop growth. Significant genetic variations for all the traits evaluated under three conditions indicated the presence of variability for the traits. Trait association analysis revealed that flag leaf chlorophyll content and MSI at seedling stage; MDA at reproductive stage had direct relationship with grain yield. While under very late sown condition MDA and RWC at seedling stages were found to be highly correlated with grain yield. It indicates that MDA, RWC at seedling stage and days to booting, days to milking plays important role in very late sown condition that can be used as selection criteria in breeding programme.


2019 ◽  
Vol 1 (2) ◽  
pp. 53-61
Author(s):  
Waqas Ahmad ◽  
Nazim Hussain ◽  
Sabir H. Shah

Among abiotic factors, high temperature is severe constraint limiting crop production. Wheat is a major cereal and staple crop of Pakistan. An experiment was conducted (winter season 2018-19) to expose the effect of warmness induced biochemical alteration on morphological points of Pakistani wheat cultivars. Randomized complete block design (RCBD) with split plot arrangement having three replications was used to experiment. Heat stress treatments H0 = No heat imposition, H1 = heat imposition from (Feekes Scale = 10 to 10.5) booting to complete heading were randomized in main plots while varieties in subplots. Galaxy-2013, Gold-2016, Ghazi-2016, Aas-2011, Johar-2016, Pakistan-2013, F-8, Sahar-2006, Jauher-2016 and AARI-2011. Under heat stress, a smaller reduction in chlorophyll fillings and improvement in antioxidant activities were showed by Ghazi-2019, Aas-2011 and Jhor-2016. Among all other cultivars, higher chlorophyll deprivation and depletion in antioxidant activities under heat stress over control was observed. Reasonably lesser grain filling rate, higher duration, number of grains per spike and yield was detected for cultivars Ghazi-2019, Aas-2011, Jhor-2016 and F-8 under heat stress over control. Convincingly, based on biochemical response and morphological indicators genotypes Ghazi-2019, Aas-2011 and Jhor-2016 manifested heat tolerance. Genotype Fareed-2006 and F-8 manifested medium tolerance. Whereas, genotype AARI-2011, Galaxy-2013, Gold- 2016, Jhor-2016, Pakistain-2013, Sher-2006 and Ujala depicted susceptibility to terminal heat stress.


2019 ◽  
Vol 1 (2) ◽  
pp. 53-61
Author(s):  
Waqas Ahmad ◽  
Nazim Hussain ◽  
Sabir H. Shah

Among abiotic factors, high temperature is severe constraint limiting crop production. Wheat is a major cereal and staple crop of Pakistan. An experiment was conducted (winter season 2018-19) to expose the effect of warmness induced biochemical alteration on morphological points of Pakistani wheat cultivars. Randomized complete block design (RCBD) with split plot arrangement having three replications was used to experiment. Heat stress treatments H0 = No heat imposition, H1 = heat imposition from (Feekes Scale = 10 to 10.5) booting to complete heading were randomized in main plots while varieties in subplots. Galaxy-2013, Gold-2016, Ghazi-2016, Aas-2011, Johar-2016, Pakistan-2013, F-8, Sahar-2006, Jauher-2016 and AARI-2011. Under heat stress, a smaller reduction in chlorophyll fillings and improvement in antioxidant activities were showed by Ghazi-2019, Aas-2011 and Jhor-2016. Among all other cultivars, higher chlorophyll deprivation and depletion in antioxidant activities under heat stress over control was observed. Reasonably lesser grain filling rate, higher duration, number of grains per spike and yield was detected for cultivars Ghazi-2019, Aas-2011, Jhor-2016 and F-8 under heat stress over control. Convincingly, based on biochemical response and morphological indicators genotypes Ghazi-2019, Aas-2011 and Jhor-2016 manifested heat tolerance. Genotype Fareed-2006 and F-8 manifested medium tolerance. Whereas, genotype AARI-2011, Galaxy-2013, Gold- 2016, Jhor-2016, Pakistain-2013, Sher-2006 and Ujala depicted susceptibility to terminal heat stress.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 455
Author(s):  
Hafeez ur Rehman ◽  
Absaar Tariq ◽  
Imran Ashraf ◽  
Mukhtar Ahmed ◽  
Adele Muscolo ◽  
...  

Wheat crop experiences high temperature stress during flowering and grain-filling stages, which is termed as “terminal heat stress”. Characterizing genotypes for adaptive traits could increase their selection for better performance under terminal heat stress. The present study evaluated the morpho-physiological traits of two spring wheat cultivars (Millet-11, Punjab-11) and two advanced lines (V-07096, V-10110) exposed to terminal heat stress under late sowing. Early maturing Millet-11 was used as heat-tolerant control. Late sowing reduced spike length (13%), number of grains per spike (10%), 1000-grain weight (13%) and biological yield (15–20%) compared to timely sowing. Nonetheless, higher number of productive tillers per plant (19–20%) and grain yield (9%) were recorded under late sowing. Advanced lines and genotype Punjab-11 had delayed maturity and better agronomic performance than early maturing heat-tolerant Millet-11. Advanced lines expressed reduced canopy temperature during grain filling and high leaf chlorophyll a (20%) and b (71–125%) contents during anthesis under late sowing. All wheat genotypes expressed improved stem water-soluble carbohydrates under terminal heat stress that were highest for heat-tolerant Millet-11 genotype during anthesis. Improved grain yield was associated with the highest chlorophyll contents showing stay green characteristics with maintenance of high photosynthetic rates and cooler canopies under late sowing. The results revealed that advanced lines and Punjab-11 with heat adaptive traits could be promising source for further use in the selection of heat-tolerant wheat genotypes.


2021 ◽  
Vol 19 (1) ◽  
pp. 74-89
Author(s):  
Amandeep Kaur ◽  
Parveen Chhuneja ◽  
Puja Srivastava ◽  
Kuldeep Singh ◽  
Satinder Kaur

AbstractAddressing the impact of heat stress during flowering and grain filling is critical to sustaining wheat productivity to meet a steadily increasing demand from a rapidly growing world population. Crop wild progenitor species of wheat possess a wealth of genetic diversity for several biotic and abiotic stresses, and morphological traits and can serve as valuable donors. The transfer of useful variation from the diploid progenitor, Aegilops tauschii, to hexaploid wheat can be done through the generation of synthetic hexaploid wheat (SHW). The present study targeted the identification of potential primary SHWs to introduce new genetic variability for heat stress tolerance. Selected SHWs were screened for different yield-associated traits along with three advanced breeding lines and durum parents as checks for assessing terminal heat stress tolerance under timely and late sown conditions for two consecutive seasons. Heat tolerance index based on the number of productive tillers and thousand grain weight indicated that three synthetics, syn9809 (64.32, 78.80), syn14128 (50.30, 78.28) and syn14135 (58.16, 76.03), were able to endure terminal heat stress better than other SHWs as well as checks. One of these synthetics, syn14128, recorded a minimum reduction in thousand kernel weight (21%), chlorophyll content (2.56%), grain width (1.07%) despite minimum grain-filling duration (36.15 d) and has been selected as a potential candidate for introducing the terminal heat stress tolerance in wheat breeding programmes. Breeding efforts using these candidate donors will help develop lines with a higher potential to express the desired heat stress-tolerant phenotype under field conditions.


2012 ◽  
Vol 131 (6) ◽  
pp. 716-721 ◽  
Author(s):  
Shahnoza Hazratkulova ◽  
Ram C. Sharma ◽  
Safar Alikulov ◽  
Sarvar Islomov ◽  
Tulkin Yuldashev ◽  
...  

1977 ◽  
Vol 34 (0) ◽  
pp. 551-563
Author(s):  
A.M.L. Neptune ◽  
T. Muraoka

An experiment was carried out with common bean (Phaseolus vulgaris, L.) in a Red Yellow Latossol, sandy phase, in order to study the influence of foliar spraying of the Hanway nutrient solution (NPKS) at grain filling stage on: 1) grain yield; 2) the uptake of fertilizer and soil nitrogen by this crop through the root system and 3) the efficiency of utilization of the nitrogen in the foliar spray solution by the grain. The results of this experiment showed that the foliar application of the Hanway solution with ammonium nitrate at the pod filling period caused severe leaf burn and grain yield was inferior to that of the plants which received a soil application of this fertilizer at the same stage. These facts can be attributed to the presence of ammonium nitrate in the concentration used. The composition of final spray was: 114,28 Kg NH4NO3 + 43,11 Kg potassium poliphosphate + 12,44 Kg potassium sulphate per 500 litres. The uptake of nitrogen fertilizer through the root system and the efficiency of its utilization was greater than that through the leaves.


2017 ◽  
Vol 38 (1) ◽  
pp. 47 ◽  
Author(s):  
Ijaz Ahmad ◽  
Shehzad Maqsood Ahmed Basra ◽  
Muhammad Akram ◽  
Allah Wasaya ◽  
Muhammad Ansar ◽  
...  

Heat stress during reproductive and grain filling phases adversely affects the growth of cereals through reduction in grain’s number and size. However, exogenous application of antioxidants, plant growth regulators and osmoprotectants may be helpful to minimize these heat induced yield losses in cereals. This two year study was conducted to evaluate the role of exogenous application of ascorbic acid (AsA), salicylic acid (SA) and hydrogen peroxide (H2O2) applied through seed priming or foliar spray on biochemical, physiological, morphological and yield related traits, grain yield and quality of late spring sown hybrid maize. The experiment was conducted in the spring season of 2007 and 2008. We observed that application of AsA, SA and H2O2 applied through seed priming or foliar spray improved the physiological, biochemical, morphological and yield related traits, grain yield and grain quality of late spring sown maize in both years. In both years, we observed higher superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activity in the plants where AsA, SA and H2O2were applied through seed priming or foliar spray than control. Membrane stability index (MSI), relative water contents (RWC), chlorophyll contents, grain yield and grain oil contents were also improved by exogenous application of AsA, SA and H2O2 in both years. Seed priming of AsA, SA and H2O2was equally effective as the foliar application. In conclusion, seed priming with AsA, SA and H2O2 may be opted to lessen the heat induced yield losses in late sown spring hybrid maize. Heat tolerance induced by ASA, SA and H2O2 may be attributed to increase in antioxidant activities and MSI which maintained RWC and chlorophyll contents in maize resulting in better grain yield in heat stress conditions.


2015 ◽  
Vol 47 (4) ◽  
pp. 49-63 ◽  
Author(s):  
A.A. Khan ◽  
M.R. Kabir

Abstract Twenty five spring wheat genotypes were evaluated for terminal heat stress tolerance in field environments in the Agro Ecological Zone-11 of Bangladesh, during 2009-2010 cropping season. The experiments were conducted at Wheat Research Centre, Bangladesh Agricultural Research Institute, using randomized block design with three replicates under non-stress (optimum sowing) and stress (late sowing) conditions. Seven selection indices for stress tolerance including mean productivity (MP), geometric mean productivity (GMP), tolerance (TOL), yield index (YI), yield stability index (YSI), stress tolerance index (STI) and stress susceptibility index (SSI) were calculated based on grain yield of wheat under optimum and late sowing conditions. The results revealed significant variations due to genotypes for all characters in two sowing conditions. Principal component analysis revealed that the first PCA explained 0.64 of the variation with MP, GMP, YI and STI. Using MP, GMP, YI and STI, the genotypes G-05 and G-22 were found to be the best genotypes with relatively high yield and suitable for both optimum and late heat stressed conditions. The indices SSI, YSI and TOL could be useful parameters in discriminating the tolerant genotypes (G-12, G-13, and G-14) that might be recommended for heat stressed conditions. It is also concluded from the present studies that biomass, grain filling rate and spikes number m-2 are suitable for selecting the best genotypes under optimum and late sowing conditions because these parameters are highly correlated with MP, GMP, YI and STI. However, high ground cover with long pre heading stage and having high grain filling rate would made a genotype tolerant to late heat to attain a high grain yield in wheat.


Sign in / Sign up

Export Citation Format

Share Document