scholarly journals The Production and Optimization of Bioethanol from Oil Palm Fronds: A Source of Renewable Energy

Author(s):  
I. Eiroboyi ◽  
Y. Yerima

Environmental issues and the desire to be less dependent on fossil fuel have intensified research efforts towards the production of biofuels since they are a safe and clean alternatives to fossil fuels. However, the cost of carbohydrate raw materials has become a limiting factor for large-scale production, hence the need to source for low cost feedstock. This study analyzed the processes and optimization involved in the production of bioethanol from oil palm fronds from Okada, Edo State, Nigeria, as an alternative source of energy. In this study, solid-state fermentation was carried out for the production of fermentable sugars from oil palm fronds inoculated with local isolate Aspergillus niger, the results from this analysis show that the pretreatment of oil palm frond substrate using Aspergillus niger was effective, The process was effectively optimized within the confines of the following parameters; temperature X3 (36-42oC), pH, X2 (5.1-5.7), inoculum, X4(4-22) and fermentation time X1 (0-36hr), an optimum Ethanol yield Y, of 110% was obtained.

2015 ◽  
Vol 15 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Sitti Wajizah ◽  
Samadi Samadi ◽  
Yunasri Usman ◽  
Elmy Mariana

(The evaluation of  nutritive value and In Vitro digestibility of oil palm fronds through fermentation by using  Aspergillus niger  with  different soluble carbohydrate sources) ABSTRACT. Oil palm frond (OPF) is one of potential sources of alternative feed, but has limited use due to high crude fiber and low crude protein contents. Fermentation is one of the methods widely applied to improve nutritive value of animal feed. The purpose of this research is to increase nutritive value of fermented oil palm fronds by adding different soluble carbohydrate source into fermentation media. The results of the experiments indicated that fermented oil palm fronds by Aspergillus niger had a significant effect (P0,05)  on the content of crude protein, crude fiber, and ash. Generally, fermented oil palm fronds with different soluble carbohydrate was able to increase the content of crude protein of oil palm fronds, but not optimal yet in reducing the crude fiber content of fermented substrate. However, the addition of rice bran on the fermentation medium showed the best results, characterized by increasing crude protein and decreasing crude fiber contents as well as improved dry matter and organic matter digestibility, reflected in high concentration of VFA. 


2021 ◽  
Vol 60 (5) ◽  
pp. 2011-2026
Author(s):  
Eng Kein New ◽  
Ta Yeong Wu ◽  
Khai Shing Voon ◽  
Alessandra Procentese ◽  
Katrina Pui Yee Shak ◽  
...  

2018 ◽  
Vol 39 (6) ◽  
pp. 2325 ◽  
Author(s):  
Maria Yumbla-Orbes ◽  
José Geraldo Barbosa ◽  
Wagner Campos Otoni ◽  
Marcel Santos Montezano ◽  
José Antônio Saraiva Grossi ◽  
...  

Flowering induction and control is a limiting factor when commercially producing cut flowers of lisianthus and seed exposure to low temperatures, a physiological event called vernalization, induces the differentiation of vegetative buds to reproductive buds, contributing to a flowering that is uniform and has quality. The objective of this study was to evaluate the influence of seed vernalization in three cultivars of lisianthus (Excalibur, Echo and Mariachi) for 12, 24, 36 and 48 days at temperatures of 5, 10 and 15°C, in the production and quality of buds, making this technology feasible to large-scale production. During cultivation it was observed that the lower the temperature and higher the vernalization period, the lower the cycle and the greater the number of plants induced to flowering for all three cultivars, and those are important features in the context of flower production in a commercial scale. The seeds subjected to vernalization originated plants that produce flower stems within the standards required by the market, showing that vernalization was efficient to induce flowering without affecting the quality of the buds. To produce lisianthus as a cut flower of quality, it is recommended seed vernalization of Mariachi and Echo cultivars for 24 days at 5°C and Excalibur for 36 days at 5°C.


2019 ◽  
Vol 1 (1) ◽  
pp. 30-35
Author(s):  
Seri Maulina ◽  
Gewa Handika

This paper aims to understand the difference in characteristics of activated carbon produced from oil palm fronds (Elaeis guineensis Jacq) through the addition of two different activators, namely sodium carbonate (Na2CO3) and sodium chloride (NaCl). To do this, activator concentration of 10 percent each with activation temperature of 600 oC were applied in the experiment. Moreover, to determine the quality of activated carbon produced, a morphological analysis of activated carbon surfaces as well as FTIR spectra analysis on activated carbon. Identification using FTIR spectrophotometer revealed that the activated carbon in this study contained functional groups of O-H, C = O, C = C, C-C, and C-H.


Solar Energy ◽  
2016 ◽  
Vol 132 ◽  
pp. 415-429 ◽  
Author(s):  
S. Misha ◽  
S. Mat ◽  
M.H. Ruslan ◽  
E. Salleh ◽  
K. Sopian
Keyword(s):  
Oil Palm ◽  

2018 ◽  
Vol 122 ◽  
pp. 617-626 ◽  
Author(s):  
Masniroszaime Md Zain ◽  
Abdul Wahab Mohammad ◽  
Shuhaida Harun ◽  
Nurul Aina Fauzi ◽  
Nur Hanis Hayati Hairom

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 218
Author(s):  
Pin Chanjula ◽  
Chanon Suntara ◽  
Anusorn Cherdthong

This study aimed to examine the combined effects of urea and calcium hydroxide ensiled oil palm fronds on rumen fermentation and digestibility of Thai native-Anglo Nubian goats. A 4 × 4 Latin square design was used to randomly assign four male crossbred goats (Thai native × Anglo Nubian). The dietary treatments were as follows: ensiled oil palm frond with no additives (EOPF as the control), urea 5% (50 g/kg fresh matter) (E-UOPF 5%), calcium hydroxide (Ca(OH)2) 5% (50 g/kg fresh matter) (E-CaOPF 5%), and combination of urea 2.5% (25 g/kg fresh matter) with Ca(OH)2 (25 g/kg fresh matter) (E-UCOPF 2.5%). The oil palm frond ensiled with different additives did not change the DM intake (p > 0.05). The total TMR intakes range from 69.39 to 77.09 g/kg BW0.75. The goats fed with E-UOPF 5.0% consumed significantly more CP than the other groups (p < 0.05). The E-UCOPF increased ME intake by 4.8%, compared with the control treatment (p < 0.05). E-UOPF 5% and E-UCOPF 2.5% significantly increased the CP digestibility by 19.7% and 17.1%, respectively (p < 0.05). Furthermore, E-CaOPF 5.0% and E-UCOPF 2.5% improved the NDF digestibility by about 10.9% and 9.90%, respectively (p < 0.05). The urea-containing oil palm frond (E-UOPF 5.0% and E-UCOPF 2.5%) had higher blood urea nitrogen (BUN) than the other groups (p < 0.05). The TVFA of goats fed E-UCOPF 2.5% was approximately 15.8% higher than that of goats provide EOPF (p < 0.05). The mean concentration of C3 increased by 7.90% and 11.61%, respectively, when E-CaOPF 5.0% and E-UCOPF 2.5% were provided instead of EOPF (p < 0.05). The total N intake and absorbed were highest (p < 0.05) when goats offered E-UOPF 5.0% (p < 0.05). The goats fed oil palm frond without additives had the lowest percentage of N-absorption/N intake (p < 0.05). This study clearly shows that the most suitable treatment is E-UCOPF 2.5%, which enhances DMD, nutrient digestibility, TVFAs, and nitrogen balance and has no negative effects on rumen microbes. This indicates that E-UCOPF 2.5% may be utilized as an alternate roughage source in TMR diets, accounting for at least 40% of the OPF. However, several factors still require consideration for urea-Ca(OH)2 treatments to be successful, including other concentrations of urea, moisture content, duration of pre-treatment, and the metabolizable protein system.


Sign in / Sign up

Export Citation Format

Share Document