scholarly journals Mechanistic Validation of an Ergogenic T. arjuna Standardized Extract (Oxyjun®) Using a Molecular Docking Approach

Author(s):  
Kavita Pandey ◽  
Gursimran Kaur Uppal ◽  
Ratna Upadhyay

The bark of the tree Terminalia arjuna commonly referred as Arjuna is widely used in Ayurveda as a therapeutic agent for heart disease. More recently, a proprietary botanical extract of T. arjuna with tradename, Oxyjun®, demonstrated cardiotonic and ergogenic benefits for the first time in a younger and healthier population. However, the mechanism of action and biological actives of this novel sports ingredient were not clear. A molecular docking approach was adopted to understand the protein-ligand interactions and establish the most probable mechanism(s) of cardio vascular actions of the phytoconstituents of the T. arjuna standardized extract (TASE). Twenty-one phytochemicals (ligands) were chosen from Arjuna and their binding affinities against eight proteins serving cardiovascular functions (target proteins) were investigated. Autodock Vina was used to carry out the molecular docking studies. Potential efficacy in humans was assessed on the basis of ADMET properties and Lipinski’s Rule of 5. We found that arjunic acid, arjungenin, arjunetin, arjunglucoside1, chrysin, kaempferol, luteolin, rhamnetin and taxifolin demonstrated good docking scores and bioactivity.

2020 ◽  
Author(s):  
Vikas Kumar ◽  
Nitin Sharma ◽  
Anuradha Sourirajan ◽  
Prem Kumar Khosla ◽  
Kamal Dev

AbstractTerminalia arjuna (Roxb.) Wight and Arnot (T. arjuna) commonly known as Arjuna has been known for its cardiotonic nature in heart failure, ischemic, cardiomyopathy, atherosclerosis, myocardium necrosis and also has been used in the treatment of different human disorders such as blood diseases, anaemia and viral diseases. Our focus has been on phytochemicals which do not exhibit any cytotoxicity and have significant cardioprotective activity. Since Protein-Ligand interactions play a key role in structure-based drug design, therefore with the help of molecular docking, we screened 19 phytochemicals present in T. arjuna and investigated their binding affinity against different cardiovascular target proteins. The three-dimensional (3D) structure of target cardiovascular proteins were retrieved from Protein Data Bank, and docked with 3D Pubchem structures of 19 phytochemicals using Autodock vina. Molecular docking and drug-likeness studies were made using ADMET properties while Lipinski’s rule of five was performed for the phytochemicals to evaluate their cardio protective activity. Among all selected phytocompounds, arjunic acid, arjungenin, and terminic acid were found to fulfill all ADMET rules, drug likeness, and are less toxic in nature. Our studies, therefore revealed that these three phytochemicals from T. arjuna can be used as promising candidates for developing broad spectrum drugs against cardiovascular diseases.


2020 ◽  
Vol 17 (2) ◽  
pp. 233-247
Author(s):  
Krishna A. Gajjar ◽  
Anuradha K. Gajjar

Background: Pharmacophore mapping and molecular docking can be synergistically integrated to improve the drug design and discovery process. A rational strategy, combiphore approach, derived from the combined study of Structure and Ligand based pharmacophore has been described to identify novel GPR40 modulators. Methods: DISCOtech module from Discovery studio was used for the generation of the Structure and Ligand based pharmacophore models which gave hydrophobic aromatic, ring aromatic and negative ionizable as essential pharmacophoric features. The generated models were validated by screening active and inactive datasets, GH scoring and ROC curve analysis. The best model was exposed as a 3D query to screen the hits from databases like GLASS (GPCR-Ligand Association), GPCR SARfari and Mini-Maybridge. Various filters were applied to retrieve the hit molecules having good drug-like properties. A known protein structure of hGPR40 (pdb: 4PHU) having TAK-875 as ligand complex was used to perform the molecular docking studies; using SYBYL-X 1.2 software. Results and Conclusion: Clustering both the models gave RMSD of 0.89. Therefore, the present approach explored the maximum features by combining both ligand and structure based pharmacophore models. A common structural motif as identified in combiphore for GPR40 modulation consists of the para-substituted phenyl propionic acid scaffold. Therefore, the combiphore approach, whereby maximum structural information (from both ligand and biological protein) is explored, gives maximum insights into the plausible protein-ligand interactions and provides potential lead candidates as exemplified in this study.


2020 ◽  
Vol 45 (2) ◽  
Author(s):  
Eda Özturan Özer ◽  
Oya Unsal Tan ◽  
Suna Turkoglu

AbstractBackground/ObjectiveGinsenosides, the major active components of the ginseng, are known to have various effects on nervous systems. The present study aimed to clarify the inhibition potentials of ginsenosides Rb1, Rc, Re and Rg1 on acetylcholinesterase (AChE) and butrylcholinesterase (BChE) activities, and to evaluate the underlying mechanisms of inhibitions provided by protein-ligand interactions considering their probable candidates of prodrug.Materials and methodsThe inhibitory mechanisms of ginsenosides related with their structural diversity were analyzed kinetically and protein-ligand interactions for both enzymes were evaluated with most potent ginsenosides, by molecular docking studies.ResultsGinsenosides Re and Rg1, with sugar moieties attached to the C-6 and C-20 positions of core structure were found to possess the most powerful inhibitory effect on AChE and BChE activities. Molecular docking studies have been confirmed by kinetic studies. Ginsenosides having a direct interaction with amino acid residues belonging to the catalytic triad revealed the most powerful inhibition with lowest enzyme-inhibitor dissociation constant (Ki) values.ConclusionsGinsenosides Re and Rg1, either alone or in a specific combination, may provide beneficial effects on neurodegenerative pathologies in therapeutic terms.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 260 ◽  
Author(s):  
Jangampalli Pradeepkiran ◽  
P. Reddy

The purpose of our study is to identify phosphorylated tau (p-tau) inhibitors. P-tau has recently received great interest as a potential drug target in Alzheimer’s disease (AD). The continuous failure of Aβ-targeted therapeutics recommends an alternative drug target to treat AD. There is increasing evidence and growing awareness of tau, which plays a central role in AD pathophysiology, including tangles formation, abnormal activation of phosphatases/kinases, leading p-tau aggregation in AD neurons. In the present study, we performed computational pharmacophore models, molecular docking, and simulation studies for p-tau in order to identify hyperphosphorylated sites. We found multiple serine sites that altered the R1/R2 repeats flanking sequences in the tau protein, affecting the microtubule binding ability of tau. The ligand molecules exhibited the p-O ester scaffolds with inhibitory and/or blocking actions against serine residues of p-tau. Our molecular docking results revealed five ligands that showed high docking scores and optimal protein-ligand interactions of p-tau. These five ligands showed the best pharmacokinetic and physicochemical properties, including good absorption, distribution, metabolism, and excretion (ADME) and admetSAR toxicity tests. The p-tau pharmacophore based drug discovery models provide the comprehensive and rapid drug interventions in AD, and tauopathies are expected to be the prospective future therapeutic approach in AD.


2021 ◽  
Vol 22 (7) ◽  
pp. 3595
Author(s):  
Md Afjalus Afjalus Siraj ◽  
Md. Sajjadur Rahman ◽  
Ghee T. Tan ◽  
Veronique Seidel

A molecular docking approach was employed to evaluate the binding affinity of six triterpenes, namely epifriedelanol, friedelin, α-amyrin, α-amyrin acetate, β-amyrin acetate, and bauerenyl acetate, towards the cannabinoid type 1 receptor (CB1). Molecular docking studies showed that friedelin, α-amyrin, and epifriedelanol had the strongest binding affinity towards CB1. Molecular dynamics simulation studies revealed that friedelin and α-amyrin engaged in stable non-bonding interactions by binding to a pocket close to the active site on the surface of the CB1 target protein. The studied triterpenes showed a good capacity to penetrate the blood–brain barrier. These results help to provide some evidence to justify, at least in part, the previously reported antinociceptive and sedative properties of Vernonia patula.


Author(s):  
Peter Juma Ochieng ◽  
Tony Sumaryada ◽  
Daniel Okun

  Objective: To perform molecular docking and pharmacokinetic prediction of momordicoside F2, beta-sitosterol, and cis-N-feruloyltyramine herbal derivatives as maltase-glucoamylase (MGAM) inhibitors for the treatment of diabetes.Methods: The herbal derivatives and standard drug miglitol were docked differently onto MGAM receptor using AutoDock Vina software. In addition, Lipinski’s rule, drug-likeness, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties were analyzed using Molinspiration, ADMET structure–activity relationship, and prediction of activity spectra for substances online tools.Results: Docking studies reveal that momordicoside F2, beta-sitosterol, and cis-N-feruloyltyramine derivatives have high binding affinity to the MGAM receptor (−7.8, −6.8, and −6.5 Kcal/Mol, respectively) as compared to standard drug miglitol (−5.3 Kcal/Mol). In addition, all the herbal derivatives indicate good bioavailability (topological polar surface area <140 Ȧ and Nrot <10) without toxicity or mutagenic effects.Conclusion: The molecular docking and pharmacokinetic information of herbal derivatives obtained in this study can be utilized to develop novel MGAM inhibitors having antidiabetic potential with better pharmacokinetic and pharmacodynamics profile.


2020 ◽  
Vol 11 (3) ◽  
pp. 9871-9879

Neurodegenerative diseases have been characterized by loss of neuron structures as well as their functions. This study was designed to assess molecular docking of flavonoids from Andrographis paniculata as potential acetylcholinesterase, butyrylcholinesterase, and monoamine oxidase inhibitors in the treatment of neurodegenerative diseases. Eight identified possible inhibitors of acetylcholinesterase, butyrylcholinesterase, and monoamine oxidase from Andrographis paniculata were retrieved from the PubChem database. The molecular docking, ADMET, and Lipinski’s rule of five were examined using different bioinformatic tools. It was shown that only rutin has the highest binding affinity (-12.6 kcal/mol) than the standard used. ADMET results demonstrated that all the eight compounds are druggable candidates except rutin. Also, only tangeritin has a blood-brain barrier (BBB) permeation potential. Hence, it can be deduced that all flavonoid compounds from Andrographis paniculata are orally druggable, which can make them useful in the treatment of neurodegenerative diseases better than donepezil.


2021 ◽  
Vol 35 (08) ◽  
pp. 2130002
Author(s):  
Connor J. Morris ◽  
Dennis Della Corte

Molecular docking and molecular dynamics (MD) are powerful tools used to investigate protein-ligand interactions. Molecular docking programs predict the binding pose and affinity of a protein-ligand complex, while MD can be used to incorporate flexibility into docking calculations and gain further information on the kinetics and stability of the protein-ligand bond. This review covers state-of-the-art methods of using molecular docking and MD to explore protein-ligand interactions, with emphasis on application to drug discovery. We also call for further research on combining common molecular docking and MD methods.


Author(s):  
Thenmozhi Marudhadurai ◽  
Navabshan Irfan

Piperine is known for its versatile therapeutic activity. It has been used for various disease conditions (e.g., cold, cough, etc.). Piperine is an alkaloid found in black pepper. It possesses various pharmacological actions like anti-inflammatory, anti-oxidant, anti-cholinergic, and anti-cancerous. The above-mentioned properties will be studied by selecting target proteins COX-2 protein, angiotensin converting enzyme, acetylcholineesterases, and survivin using computational docking study. This chapter explains the inhibition property of piperine against selected target protein from the results of docking studies. Based on the docking scores and protein-ligand interactions, piperine was found to bind well in the active site of the selected target proteins. It ensures the binding efficacy of piperine against selected target proteins. Docking scores and protein-ligand interactions plays an important role in its therapeutic activity.


Author(s):  
Saurabh Kumar Jha ◽  
Pravir Kumar

  Objective: Naringenin is a dietary biomolecule with broad spectrum of activities which protects neurons from various neurotoxic insults and improves cognition and motor function in neurodegenerative diseases. DJ-1 has both, ubiquitin E3 ligase as well as chaperonic activity, and loss of ubiquitin E3 ligase activity of DJ-1 has been found to be associated with familial Parkinson’s disease (PD). Naringenin induced E3 ligase activity of DJ-1 which can have possible clinical relevance in PD.Methods: Various in silico parameters such as phylogenetic analysis, homology modeling, active site prediction, and molecular docking studies using AutoDock 4.2.1 and LIGPLOT1.4.5 were carried out.Results: Three-dimensional structure of DJ-1 was generated and Ramachandran plot was obtained for quality assessment. RAMPAGE displayed 99.5% of residues in the most favored regions. 0% residues in additionally allowed and 0.5% disallowed regions of DJ-1 protein. Further, initial screenings of the molecules were done based on Lipinski’s rule of five. CastP server used to predict the ligand binding site suggests that this protein can be utilized as a potential drug target. Finally, we have found naringenin to be most effective among four biomolecules in modulating DJ-1 based on minimum inhibition constant, Ki, and highest negative free energy of binding with maximum interacting surface area in the course of docking studies.Conclusion: Our study suggests that based on different in silico parameters and molecular docking studies, naringenin can provide a new avenue for PD therapeutics.


Sign in / Sign up

Export Citation Format

Share Document