scholarly journals Membrane Interactivity of Non-steroidal Anti-inflammatory Drugs: A Literature Review

Author(s):  
Hironori Tsuchiya ◽  
Maki Mizogami

Background: Although the mode of action of non-steroidal anti-inflammatory drugs (NSAIDs) has been exclusively referred to as inhibition of cyclooxygenase, their broad pharmacological and toxicological spectra are not necessarily interpreted by the direct interaction with such enzyme proteins. Aims: Since NSAIDs have the common amphiphilic structure, they have the possibility of acting on membrane-constituting lipids. In order to gain insights into the additional mechanism of NSAIDs, we reviewed their membrane interactivity to modify the physicochemical properties of membranes. Methodology: We retrieved scientific articles from PubMed/MEDLINE, Google Scholar and ACS Publications by searching databases from 1990 to 2019. Research papers published in English in the internationally recognized journals and on-line journals were cited with preference to more recent publications. Collected articles were reviewed by title, abstract and text for relevance. Results: Results of the literature search indicated that NSAIDs structure-specifically cause the in vitro and in vivo interactions with artificial and biological membranes to change membrane fluidity, lipid phase transition and permeability. The features and potencies of their membrane interactivity vary depending on drug concentration, medium pH and membrane lipid composition. In addition to membrane proteins, NSAIDs act on membrane lipids to exhibit the anti-inflammatory and anti-tumor activity by interacting with lipid bilayer membranes at relatively low concentrations to decrease membrane fluidity and thereby affect the enzymatic activity of membrane-associated proteins and to exhibit the gastrointestinal and cardiovascular toxicity by interacting with membranous phospholipids at relatively high concentrations to increase membrane fluidity and thereby impair the membrane-relevant biofunctions. Other diverse effects of NSAIDs may also be related to their membrane interactions. Conclusion: NSAIDs share the membrane interactivity common to them as one of possible pharmacological and toxicological mechanisms.            

Author(s):  
Juan Ramón Zapata-Morales ◽  
Angel Josabad Alonso-Castro ◽  
Gloria Sarahí Muñoz-Martínez ◽  
María Mayela Martínez-Rodríguez ◽  
Mónica Esther Nambo-Arcos ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Rodrigo Cuiabano Paes Leme ◽  
Raquel Bandeira da Silva

It has been demonstrated that some non-steroidal anti-inflammatory drugs (NSAIDs), like acetylsalicylic acid, diclofenac, and ibuprofen, have anti-biofilm activity in concentrations found in human pharmacokinetic studies, which could fuel an interest in repurposing these well tolerated drugs as adjunctive therapies for biofilm-related infections. Here we sought to review the currently available data on the anti-biofilm activity of NSAIDs and its relevance in a clinical context. We performed a systematic literature review to identify the most commonly tested NSAIDs drugs in the last 5 years, the bacterial species that have demonstrated to be responsive to their actions, and the emergence of resistance to these molecules. We found that most studies investigating NSAIDs’ activity against biofilms were in vitro, and frequently tested non-clinical bacterial isolates, which may not adequately represent the bacterial populations that cause clinically-relevant biofilm-related infections. Furthermore, studies concerning NSAIDs and antibiotic resistance are scarce, with divergent outcomes. Although the potential to use NSAIDs to control biofilm-related infections seems to be an exciting avenue, there is a paucity of studies that tested these drugs using appropriate in vivo models of biofilm infections or in controlled human clinical trials to support their repurposing as anti-biofilm agents.


Author(s):  
Inayat Kabir ◽  
Imtiyaz Ansari

The article emphasizes the anti-inflammatory effects of herbal extracts on different experimental models that are repeatedly used to test the in vivo anti-inflammatory activity of herbal components. Edema, granuloma and arthritis models are used to test the anti-inflammatory activity of plant extracts whereas formalin or acetic acid-induced writhing test and hot plate methods are the most repeatedly used to evaluate anti-nociceptive potentials of the herbal extracts. Although adjuvant-induced and collagen-induced arthritis models are also quite efficient, they have been used seldom to evaluate anti-inflammatory tendencies of the herbs. Here, we suggest a double positive reference model using both steroid and nonsteroidal anti-inflammatory drugs at the same time, instead of using only one of them either.


2020 ◽  
Vol 884 ◽  
pp. 173339
Author(s):  
Keisuke Okamoto ◽  
Yoshitaka Saito ◽  
Katsuya Narumi ◽  
Ayako Furugen ◽  
Ken Iseki ◽  
...  

2020 ◽  
Vol 12 (15) ◽  
pp. 1369-1386
Author(s):  
Siva S Panda ◽  
Adel S Girgis ◽  
Hitesh H Honkanadavar ◽  
Riham F George ◽  
Aladdin M Srour

Background: A new set of hybrid conjugates derived from 2-(4-isobutylphenyl)propanoic acid (ibuprofen) is synthesized to overcome the drawbacks of the current non-steroidal anti-inflammatory drugs. Results & methodology: Synthesized conjugates were screened for their anti-inflammatory, analgesic and ulcerogenic properties. Few conjugates were found to have significant anti-inflammatory properties in the carrageenan-induced rat paw edema test, while a fair number of conjugates showed promising peripheral analgesic activity in the acetic acid-induced writhing test as well as central analgesic properties in the in vivo hot plate technique. The newly synthesized conjugates did not display any ulcerogenic liability. Conclusion: In vitro, COX-1 and COX-2 enzyme inhibition studies raveled compound 7e is more selective toward COX-2 compared with ibuprofen.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Zheling Feng ◽  
Jun Cao ◽  
Qingwen Zhang ◽  
Ligen Lin

AbstractInflammation is an active defense response of the body against external stimuli. Long term low-grade inflammation has been considered as a deteriorated factor for aging, cancer, neurodegeneration and metabolic disorders. The clinically used glucocorticoids and non-steroidal anti-inflammatory drugs are not suitable for chronic inflammation. Therefore, it’s urgent to discover and develop new effective and safe drugs to attenuate inflammation. Clerodane diterpenoids, a class of bicyclic diterpenoids, are widely distributed in plants of the Labiatae, Euphorbiaceae and Verbenaceae families, as well as fungi, bacteria, and marine sponges. Dozens of anti-inflammatory clerodane diterpenoids have been identified on different assays, both in vitro and in vivo. In the current review, the up-to-date research progresses of anti-inflammatory clerodane diterpenoids were summarized, and their druglikeness was analyzed, which provided the possibility for further development of anti-inflammatory drugs.


1990 ◽  
Vol 10 (3) ◽  
pp. 263-270 ◽  
Author(s):  
J. Pascal Zimmer ◽  
Hans A. Lehr ◽  
Christoph Hübner ◽  
Stephan G. Lindner ◽  
Ralf Ramsperger ◽  
...  

Although most non-human primates, except the chimpanzee and the gibbon in vivo are not infectible by HIV-1, lymphocytes of several of these species can be infected by HIV-1 in vitro.In order to investigate whether the in vitro infectibility of primate lymphocytes might be attributed to plasma membrane adaptation processes or to serum factors, we compared HIV-1 infectibility of cultivated peripheral blood lymphocytes of macaques and of baboons on day one and on day ten of cultivation. These data were correlated to plasma membrane lipid composition and membrane fluidity.We found a correlation between increased HIV-1 in vitro infectibility and changes in plasma membrane lipid composition resulting in decreased membrane fluidity of cultured primate lymphocytes.


2015 ◽  
Vol 31 (12) ◽  
pp. 1710-1719 ◽  
Author(s):  
Hirofumi Yokota ◽  
Sayaka Eguchi ◽  
Saki Hasegawa ◽  
Kana Okada ◽  
Fumiko Yamamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document