scholarly journals Comparative Analysis of the Effects of Monovalent and Divalent Ions on Imported Biopolymer-Xanthan Gum and Locally Formulated Biopolymers-Gum Arabic and Terminalia Mantaly

Author(s):  
Okechukwu Ezeh ◽  
Sunday Sunday Ikiensikimama ◽  
Onyewuchi Akaranta

Aim: Polymer flooding is used for enhanced oil recovery. Only polymers that can withstand harsh environments work best. HPAM is mostly the polymer used for enhanced oil recovery because it is available and cheap, but it does not withstand high temperatures and high salinity reservoirs. Xanthan Gum withstands high temperatures and high salinity reservoirs, but it is expensive and plugs the reservoir. The aim of this study is to compare the salinity stability of gum Arabic and Terminalia Mantaly, a novel biopolymer, with commercial Xanthan gum. Study Design: Locally formulated biopolymers from gum Arabic exudates bought from Bauchi State in Nigeria and from Terminalia Mantaly exudates obtained from the University of Port Harcourt. The appropriate rheological tests were carried out at the laboratory. Place and Duration of Study: The laboratory experiments were carried out at the department of Petroleum Engineering, Covenant University, Ota in Ogun State of Nigeria between 2020 and 2021. Methodology: The gum Arabic, Terminalia Mantaly and Xanthan Gum powders were dissolved in deionized water to get various concentrations in ppm. The polymers were mixed and kept for 24 hours to achieve a homogenous solution. The Automated OFITE® Viscometer at different revolutions per minute (RPM) of 3 (Gel), 6, 30, 60, 100, 200, 300, and 600 was used to measure the rheological properties of the various concentrations before Sodium Chloride (NaCl) and Calcium Chloride (CaCl2) of various concentrations were added and allowed to hydrate for another 24 hours before measuring their rheological properties again. Results: The study showed that Xanthan Gum, Gum Arabic, and Terminalia Mantaly biopolymers can be used in high salinity reservoirs. Terminalia Mantaly, a novel biopolymer, is insensitive to salinity in monovalent and divalent ions. Conclusion: Xanthan gum exhibited high viscosity even at low concentrations. Gum Arabic exhibited good tolerance to salinity at NaCl 3.5%. Terminalia Mantaly was very stable with both monovalent and divalent ions. Divalent ions have more effects on polymers than monovalent ions in reservoirs. Recommendation: It is recommended that Terminalia Mantaly be investigated more, as it can replace imported biopolymers for Enhanced Oil Recovery (EOR).

Fuel ◽  
2019 ◽  
Vol 257 ◽  
pp. 116067 ◽  
Author(s):  
Jinesh Machale ◽  
Subrata Kumar Majumder ◽  
Pallab Ghosh ◽  
Tushar Kanti Sen

2017 ◽  
Vol 26 (3) ◽  
pp. 779-785 ◽  
Author(s):  
A.N. El-hoshoudy ◽  
S.E.M. Desouky ◽  
A.M. Al-Sabagh ◽  
M.A. Betiha ◽  
El-kady M.Y. ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4212
Author(s):  
Mohamed Said ◽  
Bashirul Haq ◽  
Dhafer Al Shehri ◽  
Mohammad Mizanur Rahman ◽  
Nasiru Salahu Muhammed ◽  
...  

Tertiary oil recovery, commonly known as enhanced oil recovery (EOR), is performed when secondary recovery is no longer economically viable. Polymer flooding is one of the EOR methods that improves the viscosity of injected water and boosts oil recovery. Xanthan gum is a relatively cheap biopolymer and is suitable for oil recovery at limited temperatures and salinities. This work aims to modify xanthan gum to improve its viscosity for high-temperature and high-salinity reservoirs. The xanthan gum was reacted with acrylic acid in the presence of a catalyst in order to form xanthan acrylate. The chemical structure of the xanthan acrylate was verified by FT-IR and NMR analysis. The discovery hybrid rheometer (DHR) confirmed that the viscosity of the modified xanthan gum was improved at elevated temperatures, which was reflected in the core flood experiment. Two core flooding experiments were conducted using six-inch sandstone core plugs and Arabian light crude oil. The first formulation—the xanthan gum with 3% NaCl solution—recovered 14% of the residual oil from the core. In contrast, the modified xanthan gum with 3% NaCl solution recovered about 19% of the residual oil, which was 5% higher than the original xanthan gum. The xanthan gum acrylate is therefore more effective at boosting tertiary oil recovery in the sandstone core.


2021 ◽  
Author(s):  
Abiola Oyatobo ◽  
Amalachukwu Muoghalu ◽  
Chinaza Ikeokwu ◽  
Wilson Ekpotu

Abstract Ineffective methods of increasing oil recovery have been one of the challenges, whose solutions are constantly sought after in the oil and gas industry as the number of under-produced reservoirs increases daily. Water injection is the most extended technology to increase oil recovery, although excessive water production can pose huge damage ranging from the loss of the well to an increase in cost and capital investment requirement of surface facilities to handle the produced water. To mitigate these challenges and encourage the utilization of local contents, locally produced polymers were used in polymer flooding as an Enhanced Oil Recovery approach to increase the viscosity of the injected fluids for better profile control and reduce cost when compared with foreign polymers as floppan. Hence this experimental research was geared towards increasing the efficiency of oil displacement in sandstone reservoirs using locally sourced polymers in Nigeria and also compared the various polymers for optimum efficiency. Starch, Ewedu, and Gum Arabic were used in flooding an already obtained core samples and comparative analysis of this shows that starch yielded the highest recovery due to higher viscosity value as compared to Ewedu with the lowest mobility ratio to Gum Arabic. Finally, the concentration of Starch or Gum Arabic should be increased for optimum recovery.


2017 ◽  
Vol 135 (14) ◽  
pp. 46086 ◽  
Author(s):  
Tingjiao Yuan ◽  
Zhe Liu ◽  
Ruimin Gao ◽  
Guangfa Hu ◽  
Gai Zhang ◽  
...  

2020 ◽  
Vol 10 (8) ◽  
pp. 3947-3959
Author(s):  
Kyle Medica ◽  
Rean Maharaj ◽  
David Alexander ◽  
Mohammad Soroush

Abstract Trinidad and Tobago (TT) is seeking to develop more economical methods of enhanced oil recovery to arrest the decline in crude oil production and to meet the current and future energy demand. The utilization of alkaline-polymer flooding to enhance oil recovery in TT requires key studies to be conducted to obtain critical information of the flooding system (soil type, additive type, pH, adsorption characteristics and rheological (flow) characteristics). Understanding the role of, interplay and optimizing of these variables will provide key input data for the required simulations to produce near realistic projections of the required EOR efficiencies. The parameters of various wells in TT were compared to the screening criteria for alkali-polymer flooding, and the EOR 4 well was found to be suitable and thus selected for evaluation. Laboratory adsorption studies showed that the 1000 ppm xanthan gum flooding solution containing 0.25% NaOH exhibited the lowest absorption capacity for the gravel packed sand and exhibited the lowest viscosity at all the tested shear rates. The lowest adsorption was 2.27 × 10−7 lbmole/ft3 which occurred with the 1000 ppm xanthan gum polymer containing 0.25% NaOH, and the evidence showed that the polymer was adsorbed on the other side of the faults, indicating that it has moved further and closer to the producing well. Implementation of an alkali polymer flooding resulted in an incremental increase in the recovery factors (~ 3%) compared to polymer flooding; however, a change in the oil recovery as a function of the alkaline concentration was not observed. The simulated economic analysis clearly shows that all the analysed EOR scenarios resulted in economically feasible outcomes of net present value (NPV), Internal Rate of Return (IRR) and payback period for oil price variations between $35 and $60 USD per barrel of oil. A comparison of the individual strategies shows that the alkali-polymer flood system utilizing 0.25% sodium hydroxide with 1000 ppm xanthan gum is the best option in terms of cumulative production, recovery factor, NPV, IRR and time to payback.


SPE Journal ◽  
2013 ◽  
Vol 19 (02) ◽  
pp. 249-259 ◽  
Author(s):  
Yunshen Chen ◽  
Amro S. Elhag ◽  
Benjamin M. Poon ◽  
Leyu Cui ◽  
Kun Ma ◽  
...  

Summary To improve sweep efficiency for carbon dioxide (CO2) enhanced oil recovery (EOR) up to 120°C in the presence of high-salinity brine (182 g/L NaCl), novel CO2/water (C/W) foams have been formed with surfactants composed of ethoxylated amine headgroups with cocoalkyl tails. These surfactants are switchable from the nonionic (unprotonated amine) state in dry CO2 to cationic (protonated amine) in the presence of an aqueous phase with a pH less than 6. The high hydrophilicity in the protonated cationic state was evident in the high cloudpoint temperature up to 120°C. The high cloud point facilitated the stabilization of lamellae between bubbles in CO2/water foams. In the nonionic form, the surfactant was soluble in CO2 at 120°C and 3,300 psia at a concentration of 0.2% (w/w). C/W foams were produced by injecting the surfactant into either the CO2 phase or the brine phase, which indicated good contact between phases for transport of surfactant to the interface. Solubility of the surfactant in CO2 and a favorable C/W partition coefficient are beneficial for transport of surfactant with CO2-flow pathways in the reservoir to minimize viscous fingering and gravity override. The ethoxylated cocoamine with two ethylene oxide (EO) groups was shown to stabilize C/W foams in a 30-darcy sandpack with NaCl concentrations up to 182 g/L at 120°C and 3,400 psia, and foam qualities from 50 to 95%. The foam produces an apparent viscosity of 6.2 cp in the sandpack and 6.3 cp in a 762-μm-inner-diameter capillary tube (downstream of the sandpack) in contrast with values well below 1 cp without surfactant present. Moreover, the cationic headgroup reduces the adsorption of ethoxylated alkyl amines on calcite, which is also positively charged in the presence of CO2 dissolved in brine. The surfactant partition coefficients (0 to 0.04) favored the water phase over the oil phase, which is beneficial for minimizing losses of surfactant to the oil phase for efficient surfactant usage. Furthermore, the surfactant was used to form C/W foams, without forming stable/viscous oil/water (O/W) emulsions. This selectivity is desirable for mobility control whereby CO2 will have low mobility in regions in which oil is not present and high contact with oil at the displacement front. In summary, the switchable ethoxylated alkyl amine surfactants provide both high cloudpoints in brine and high interfacial activities of ionic surfactants in water for foam generation, as well as significant solubilities in CO2 in the nonionic dry state for surfactant injection.


2008 ◽  
Vol 29 (1) ◽  
pp. 25 ◽  
Author(s):  
Dongmei Li ◽  
Philip Hendry

Buried hydrocarbon deposits, such as liquid petroleum, represent an abundant source of reduced carbon for microbes. It is not surprising therefore that many organisms have adapted to an oily, anaerobic life deep underground, often at high temperatures and pressures, and that those organisms have had, and in some cases continue to have, an effect on the quality and recovery of the earth?s diminishing petroleum resources. There are three key microbial processes of interest to petroleum producers: reservoir souring, hydrocarbon degradation and microbially enhanced oil recovery (MEOR).


Sign in / Sign up

Export Citation Format

Share Document