scholarly journals Antiurolithiatic Evaluation of α- Mangostin Fraction Isolated from Garcinia mangostana Pericarp through Computational, in vitro and in vivo Approach

Author(s):  
Akash Kumaran ◽  
Prabhu Sukumaran

Background: The aqueous crude extract of Garcinia mangostana fruit pericarp was already proven to contain antiurolithiatic property. Based on this previous study the current study was focused on analysing the anti-urolithiatic property of α- mangostin, a xanthone polyphenol isolated from the fruit pericarp of G. manostana, which has not been tested for its anti-urolithiatic property till now. Objective: The aim of this present study is to evaluate the anti-urolithiatic property of the isolated α- mangostin from G. mangostana fruit pericarp using in silico, in vitro and in vivo analysis. Study Design: Antiurolithiatic activity of α- mangostin through Molecular docking study à In vitro S.S.M model study à Animal studies. Place and Duration: Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur, Sriperumbudur Tk, Kancheepuram Dt, TN-602117, India. Materials and Methods: In silico Molecular docking of α- mangostin with Kidney stone forming proteins- Xanthine dehydrogenase (Xdh), Oxalate oxidase and Tamm-Horesefall Protein (THP) were performed using AutoDock 4.0 and was visualised in Discovery studio software. In vitro Simultaneous Static flow Model (S.S.M) was performed to investigate its Antiurolithiatic property against Calcium Oxalate (CaOx) and Calcium Phosphate (CaP) crystals. Based on the in silico and in vitro analysis, the study was extrapolated to Ethylene Glycol (EG) induced urolithiasis rat models. The animal study was performed with 36 Albino Wistar rats which were divided into 6 groups. All group except group I received EG (0.75% in drinking water) for the induction of Urolithiasis for 28 days under curative regimen. Group III was administered orally with Cystone (750 mg/kg) from 15th to 28thday. Group IV to VI was administered orally with GMPE (300 mg/kg, 500 mg/kg and 750 mg/kg) from 15thto 28th day. Results: Molecular Docking studies showed an inhibitory interaction of α- mangostin with oxalate oxidase, Xdh and THP with binding affinity of -4.47, -4.00 and -3.41 Kcal/mol respectively. S.S.M showed 54.71% inhibition for CaOx crystals and 62.21% inhibition of CaP crystals. The animal studies showed significant results in reduction of serum calcium (P<0.01), serum phosphate (P<0.01), urine calcium(P<0.001) and urine phosphate(P<0.01). Conclusion: Thus, α- mangostin proved to be potent Anti-urolithiatic agent by reducing and disintegrating the urinary crystals.

Biomedicines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 68 ◽  
Author(s):  
Md. Adnan ◽  
Md. Nazim Uddin Chy ◽  
A.T.M. Mostafa Kamal ◽  
Md Obyedul Kalam Azad ◽  
Kazi Asfak Ahmed Chowdhury ◽  
...  

Piper sylvaticum Roxb. is traditionally used by the indigenous people of tropical and subtropical countries like Bangladesh, India, and China for relieving the common cold or a variety of chronic diseases, such as asthma, chronic coughing, piles, rheumatic pain, headaches, wounds, tuberculosis, indigestion, and dyspepsia. This study tested anxiolytic and antioxidant activities by in vivo, in vitro, and in silico experiments for the metabolites extracted (methanol) from the leaves and stems of P. sylvaticum (MEPSL and MEPSS). During the anxiolytic evaluation analyzed by elevated plus maze and hole board tests, MEPSL and MEPSS (200 and 400 mg/kg, body weight) exhibited a significant and dose-dependent reduction of anxiety-like behavior in mice. Similarly, mice treated with MEPSL and MEPSS demonstrated dose-dependent increases in locomotion and CNS simulative effects in open field test. In addition, both extracts (MEPSL and MEPSS) also showed moderate antioxidant activities in DPPH scavenging and ferric reducing power assays compared to the standard, ascorbic acid. In parallel, previously isolated bioactive compounds from this plant were documented and subjected to a molecular docking study to correlate them with the pharmacological outcomes. The selected four major phytocompounds displayed favorable binding affinities to potassium channel and xanthine oxidoreductase enzyme targets in molecular docking experiments. Overall, P. sylvaticum is bioactive, as is evident through experimental and computational analysis. Further experiments are necessary to evaluate purified novel compounds for the clinical evaluation.


2020 ◽  
Vol 32 (6) ◽  
pp. 1482-1490
Author(s):  
Manju Mathew ◽  
Raja Chinnamanayakar ◽  
Ezhilarasi Muthuvel Ramanathan

A series of 1-(5-(5-(4-chlorophenyl)furan-2-yl)-4,5-dihyropyrazol-1-yl ethanone (5a-h) was synthesized through E-(3-(5-(4-chloro-phenyl)furan-2-yl)-1-phenylprop-2-en-1-one (3a-h) with hydrazine monohydrate and sodium acetate. Totally, eight compounds were synthesized and their structures were elucidated by infrared, 1H & 13C NMR, elemental analysis, antimicrobial studies, in silico molecular docking studies and also in silico ADME prediction. Antimicrobial studies of the synthesized compounds showed good to moderate activity against the all the stains compared with standard drugs. in silico Molecular docking study was carried out using bacterial protein and BC protein. Synthesized compounds (5a-h) showed good docking score compared with ciprofloxacin. Antimicrobial study was carried out for 4-chlorophenyl furfuran pyrazole derivatives (5a-h). The results of assessment of toxicities, drug likeness and drug score profiles of compounds (5a-j) are promising


2019 ◽  
Vol 11 (2) ◽  
pp. 118-128 ◽  
Author(s):  
Rajagopal Kalirajan ◽  
Arumugasamy Pandiselvi ◽  
Byran Gowramma ◽  
Pandiyan Balachandran

Background: Human Epidermal development factor Receptor-2 (HER2) is a membrane tyrosine kinase which is overexpressed and gene amplified in human breast cancers. HER2 amplification and overexpression have been linked to important tumor cell proliferation and survival pathways for 20% of instances of breast cancer. 9-aminoacridines are significant DNA-intercalating agents because of their antiproliferative properties. Objective: Some novel isoxazole substituted 9-anilinoacridines(1a-z) were designed by in-silico technique for their HER2 inhibitory activity. Docking investigations of compounds 1a-z are performed against HER2 (PDB id-3PP0) by using Schrodinger suit 2016-2. Methods: Molecular docking study for the designed molecules 1a-z are performed by Glide module, in-silico ADMET screening by QikProp module and binding free energy by Prime-MMGBSA module of Schrodinger suit. The binding affinity of designed molecules 1a-z towards HER2 was chosen based on GLIDE score. Results: Many compounds showed good hydrophobic communications and hydrogen bonding associations to hinder HER2. The compounds 1a-z, aside from 1z have significant Glide scores in the scope of - 4.91 to - 10.59 when compared with the standard Ethacridine (- 4.23) and Tamoxifen (- 3.78). The in-silico ADMET properties are inside the suggested about drug likeness. MM-GBSA binding of the most intense inhibitor is positive. Conclusion: The outcomes reveal that this study provides evidence for the consideration of isoxazole substituted 9-aminoacridine derivatives as potential HER2 inhibitors. The compounds, 1s,x,v,a,j,r with significant Glide scores may produce significant anti breast cancer activity and further in vitro and in vivo investigations may prove their therapeutic potential.


2020 ◽  
Vol 3 (4) ◽  
pp. 989-1000
Author(s):  
Mustapha Abdullahi ◽  
Shola Elijah Adeniji

AbstractMolecular docking simulation of thirty-five (35) molecules of N-(2-phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamide (IPA) with Mycobacterium tuberculosis target (DNA gyrase) was carried out so as to evaluate their theoretical binding affinities. The chemical structure of the molecules was accurately drawn using ChemDraw Ultra software, then optimized at density functional theory (DFT) using Becke’s three-parameter Lee–Yang–Parr hybrid functional (B3LYP/6-311**) basis set in a vacuum of Spartan 14 software. Subsequently, the docking operation was carried out using PyRx virtual screening software. Molecule 35 (M35) with the highest binding affinity of − 7.2 kcal/mol was selected as the lead molecule for structural modification which led to the development of four (4) newly hypothetical molecules D1, D2, D3 and D4. In addition, the D4 molecule with the highest binding affinity value of − 9.4 kcal/mol formed more H-bond interactions signifying better orientation of the ligand in the binding site compared to M35 and isoniazid standard drug. In-silico ADME and drug-likeness prediction of the molecules showed good pharmacokinetic properties having high gastrointestinal absorption, orally bioavailable, and less toxic. The outcome of the present research strengthens the relevance of these compounds as promising lead candidates for the treatment of multidrug-resistant tuberculosis which could help the medicinal chemists and pharmaceutical professionals in further designing and synthesis of more potent drug candidates. Moreover, the research also encouraged the in vivo and in vitro evaluation study for the proposed designed compounds to validate the computational findings.


2020 ◽  
Author(s):  
pooja singh ◽  
Angkita Sharma ◽  
Shoma Paul Nandi

<p>Within the span of a few months, the severe acute respiratory syndrome coronavirus, COVID-19 (SARS-CoV-2), has proven to be a pandemic, affecting the world at an exponential rate. It is extremely pathogenic and causes communicable infection in humans. Viral infection causes difficulties in breathing, sore throat, cough, high fever, muscle pain, diarrhea, dyspnea, and may lead to death. Finding a proper drug and vaccines against this virus is the need of the hour. The RNA genome of COVID19 codes for the main protease M<sup>pro</sup>, which is required for viral multiplication. To identify possible antiviral drug(s), we performed molecular docking studies. Our screen identified ten biomolecules naturally present in <i>Aspergillus flavus</i> and <i>Aspergillus oryzae</i> fungi. These molecules include Aspirochlorine, Aflatoxin B1, Alpha-Cyclopiazonic acid, Sporogen, Asperfuran, Aspergillomarasmine A, Maltoryzine, Kojic acid, Aflatrem and Ethyl 3-nitropropionic acid, arranged in the descending order of their docking score. Aspirochlorine exhibited the docking score of – 7.18 Kcal/mole, higher than presently used drug Chloroquine (-6.2930522 Kcal/mol) and out of ten ligands studied four has docking score higher than chloroquine. These natural bioactive compounds could be tested for their ability to inhibit viral growth <i>in- vitro</i> and <i>in-vivo</i>.<b> </b></p>


2020 ◽  
Author(s):  
Safaet Alam ◽  
Nazim Uddin Emon ◽  
Mohammad A. Rashid ◽  
Mohammad Arman ◽  
Mohammad Rashedul Haque

AbstractBackgroundColocasia gigantea is locally named as kochu and also better known due to its various healing power. This research is to investigate the antidiarrheal, antimicrobial, and antioxidant possibilities of the methanol soluble extract of Colocasia gigantea.MethodsAntidiarrheal investigation was performed by using in vivo castor oil induced diarrheal method where as in vitro antimicrobial and antioxidant investigation have been implemented by disc diffusion and DPPH scavenging method respectively. Moreover, in silico studies were followed by molecular docking analysis of several secondary metabolites were appraised with Schrödinger-Maestro v 11.1.ResultsThe induction of plant extract (200 and 400 mg/kg, b.w, p.o), the castor oil mediated diarrhea has been minimized 19.05 % (p < 0.05) and 42.86 % (p < 0.001) respectively. The methanolic extract of C. gigantea showed mild sensitivity against almost all the tested strains but it shows high consistency of phenolic content and furthermore yielded 67.68 μg/mL of IC50 value in the DPPH test. The higher and lower binding affinity was shown in beta-amyrin and monoglyceryl stearic acid against the kappa-opioid receptor (PDB ID: 4DJH) with a docking score of -3.28 kcal/mol and -6.64 kcal/mol respectively. In the antimicrobial investigation, Penduletin and Beta-Amyrin showed the highest and lowest binding affinity against the selected receptors with the docking score of -8.27 kcal/mol and -1.66 kcal/mol respectively.ConclusionThe results of our scientific research reflect that the methanol soluble extract of C. gigantea is safe which may provide possibilities of alleviation of diarrhea and as a potential wellspring of antioxidants which can be considered as an alternate source for exploration of new medicinal products.


2021 ◽  
Vol 12 ◽  
Author(s):  
Muhammad Tayyab Imtiaz ◽  
Fareeha Anwar ◽  
Uzma Saleem ◽  
Bashir Ahmad ◽  
Sundas Hira ◽  
...  

Background and objectives: Breast cancer is a heterogeneous disease that poses the highest incidence of morbidity among women and presents many treatment challenges. In search of novel breast cancer therapies, several triazine derivatives have been developed for their potential chemotherapeutic activity. This study aims to evaluate the N-nitroso-N-methyl urea (NMU)–induced anti–mammary gland tumor activity of 2,4,6 (O-nitrophenyl amino) 1,3,5-triazine (O-NPAT).Methods: The in silico modeling and in vitro cytotoxicity assay were performed to strengthen the research hypothesis. For in vivo experimentation, 30 female rats were divided into five groups. Group I (normal control) received normal saline. Group II (disease control) received NMU (50 mg/kg). Group III (standard control) was treated with tamoxifen (5 mg/kg). Groups IV and V received O-NPAT at a dose level of 30 and 60 mg/kg, respectively. For tumor induction, 3 intraperitoneal doses of NMU were given at a 3-week interval, whereas all treatment compounds were administered orally for 14 consecutive days. Biochemical and oxidative stress markers were estimated for all experimental animals. DNA strand breakage alongside inflammatory markers was also measured for the analysis of inflammation. The hormonal profile of progesterone and estrogen was also estimated.Results: The test compound presented a significant reduction in organ weight and restored the hepatic and renal enzymes. O-NPAT treatments enhanced the antioxidant enzyme level of catalase (CAT), superoxide dismutase (SOD), and total sulfhydryl (TSH), with a highly significant reduction in lactate dehydrogenase (LDH) and lipid peroxidation. Also, the decrease in fragmented DNA, hormonal levels (estradiol and progesterone), and inflammatory cytokines (IL-6 and TNF-α) justified the dosage efficacy further supported by histopathological findings.Conclusion: All results indicated the anti–breast tumor activity of O-NPAT and presented its possibility of exploitation for beneficial effects in breast cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document