scholarly journals Molecular Docking and Dynamics Simulation of a Screening Library from Life Chemicals Database for Potential Protein-Protein Interactions (PPIs) Inhibitors against SARS-CoV-2 Spike Protein

Author(s):  
Hasanain Abdulhameed Odhar ◽  
Salam Waheed Ahjel ◽  
Ahmed Fadhil Hashim ◽  
Ali Mahmood Rayshan

The ongoing pandemic of coronavirus 2 represents a major challenge for global public health authorities. Coronavirus disease 2019 can be fatal especially in elderly people and those with comorbidities. Currently, several vaccines against coronavirus 2 are under application in multiple countries with emergency use authorization. In the same time, many vaccine candidates are under development and assessment. It is worth noting that the design of some of these vaccines depends on the expression of receptor binding domain for viral spike protein to induce host immunity. As such, blocking the spike protein interface with antibodies, peptides or small molecular compounds can impede the ability of coronavirus 2 to invade host cells by intervention with interactions between viral spike protein and cellular angiotensin converting enzyme 2. In this virtual screening study, we have used predictive webservers, molecular docking and dynamics simulation to evaluate the ability of 3000 compounds to interact with interface residues of spike protein receptor binding domain. This library of chemicals was focused by Life Chemicals as potential protein-protein interactions inhibitor. Here, we report that hit compound 7, with IUPAC name of 3‐cyclohexyl‐N‐(4‐{[(1R,9R) ‐6‐oxo‐7,11‐ diazatricyclo [7.3.1.02,7] trideca‐2,4‐dien‐11‐yl] sulfonyl} phenyl) propenamide, may have the capacity to interact with interface of receptor binding domain for viral spike protein and thereby reduce cellular entry of the virus. However, in vitro and in vivo assessments may be required to validate these virtual findings.

2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


Author(s):  
Vinicio Armijos-Jaramillo ◽  
Justin Yeager ◽  
Claire Muslin ◽  
Yunierkis Perez-Castillo

AbstractThe emergence of SARS-CoV-2 has resulted in more than 200,000 infections and nearly 9,000 deaths globally so far. This novel virus is thought to have originated from an animal reservoir, and acquired the ability to infect human cells using the SARS-CoV cell receptor hACE2. In the wake of a global pandemic it is essential to improve our understanding of the evolutionary dynamics surrounding the origin and spread of a novel infectious disease. One way theory predicts selection pressures should shape viral evolution is to enhance binding with host cells. We first assessed evolutionary dynamics in select betacoronavirus spike protein genes to predict where these genomic regions are under directional or purifying selection between divergent viral lineages at various scales of relatedness. With this analysis, we determine a region inside the receptor-binding domain with putative sites under positive selection interspersed among highly conserved sites, which are implicated in structural stability of the viral spike protein and its union with human receptor hACE2. Next, to gain further insights into factors associated with coronaviruses recognition of the human host receptor, we performed modeling studies of five different coronaviruses and their potential binding to hACE2. Modeling results indicate that interfering with the salt bridges at hot spot 353 could be an effective strategy for inhibiting binding, and hence for the prevention of coronavirus infections. We also propose that a glycine residue at the receptor binding domain of the spike glycoprotein can have a critical role in permitting bat variants of the coronaviruses to infect human cells.


2021 ◽  
Author(s):  
Vincenzo Tragni ◽  
Francesca Preziusi ◽  
Luna Laera ◽  
Angelo Onofrio ◽  
Simona Todisco ◽  
...  

The rapid spread of new SARS-CoV-2 variants needs the development of rapid tools for predicting the affinity of the mutated proteins responsible for the infection, i.e., the SARS-CoV-2 spike protein, for the human ACE2 receptor, aiming to understand if a variant can be more efficient in invading host cells. Here we show how our computational pipeline, previously used for studying SARS-CoV-2 spike receptor-binding domain (RBD)/ACE2 interactions and pre-/post-fusion conformational changes, can be used for predicting binding affinities of the human ACE2 receptor for the spike protein RBD of the characterized infectious variants of concern/interest B.1.1.7-UK (carrying the mutations N501Y, S494P, E484K at the RBD), P.1-Japan/Brazil (RBD mutations: K417N/T, E484K, N501Y), B.1.351-South Africa (RBD mutations: K417N, E484K, N501Y), B.1.427/B.1.429-California (RBD mutations: L452R), the B.1.141 variant (RBD mutations: N439K), and the recent B.1.617.1-India (RBD mutations: L452R; E484Q) and the B.1.620 (RBD mutations: S477N; E484K). Furthermore, we searched for ACE2 structurally related proteins that might be involved in interactions with the SARS-CoV-2 spike protein, in those tissues showing low ACE2 expression, revealing two new proteins, THOP1 and NLN, deserving to be investigated for their possible inclusion in the group of host-cell entry factors responsible for host-cell SARS-CoV-2 invasion and immunity response.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5724
Author(s):  
Seyyed Sasan Mousavi ◽  
Akbar Karami ◽  
Tahereh Movahhed Haghighi ◽  
Sefren Geiner Tumilaar ◽  
Fatimawali ◽  
...  

The novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which initially appeared in Wuhan, China, in December 2019. Elderly individuals and those with comorbid conditions may be more vulnerable to this disease. Consequently, several research laboratories continue to focus on developing drugs to treat this infection because this disease has developed into a global pandemic with an extremely limited number of specific treatments available. Natural herbal remedies have long been used to treat illnesses in a variety of cultures. Modern medicine has achieved success due to the effectiveness of traditional medicines, which are derived from medicinal plants. The objective of this study was to determine whether components of natural origin from Iranian medicinal plants have an antiviral effect that can prevent humans from this coronavirus infection using the most reliable molecular docking method; in our case, we focused on the main protease (Mpro) and a receptor-binding domain (RBD). The results of molecular docking showed that among 169 molecules of natural origin from common Iranian medicinal plants, 20 molecules (chelidimerine, rutin, fumariline, catechin gallate, adlumidine, astragalin, somniferine, etc.) can be proposed as inhibitors against this coronavirus based on the binding free energy and type of interactions between these molecules and the studied proteins. Moreover, a molecular dynamics simulation study revealed that the chelidimerine–Mpro and somniferine–RBD complexes were stable for up to 50 ns below 0.5 nm. Our results provide valuable insights into this mechanism, which sheds light on future structure-based designs of high-potency inhibitors for SARS-CoV-2.


2020 ◽  
Author(s):  
Hasan Cubuk ◽  
Mehmet Ozbil

<p>The new type of coronavirus, SARS-CoV-2 has affected more than 6.3 million people worldwide. Since the first day the virus has been spotted in Wuhan, China, there are numerous drug design studies conducted all over the globe. Most of these studies target the receptor-binding domain of spike protein of SASR-CoV-2, which is known to bind human ACE2 receptor and SARS-CoV-2 main protease, vital for the virus’ replication. However, there might be a third target, human furin protease, which cleaves the virus’ S1-S2 domains taking active role in its entry into the host cell. In this study we docked five clinically used drug molecules, favipiravir, hydroxychloroquine, remdesivir, lopinavir, and ritonavir onto three target proteins, receptor binding domain of SARS-CoV-2 spike protein, SARS-CoV-2 main protease, and human furin protease. Results of molecular docking simulations revealed that human furin protease might be targeted against COVID-19. Remdesivir, a nucleic acid derivative, strongly bound to the active site of this protease, suggesting this molecule can be used as a template for designing novel furin protease inhibitorsto fight with the disease. Protein-drug interactions revealed at the molecular level in this study can pave the way for better drug design for each specific target.<br></p>


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 880
Author(s):  
Ismail Celik ◽  
Rohitash Yadav ◽  
Zekeriya Duzgun ◽  
Sarah Albogami ◽  
Ahmed M. El-Shehawi ◽  
...  

Since the beginning of the coronavirus 19 (COVID-19) pandemic in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been evolving through the acquisition of genomic mutations, leading to the emergence of multiple variants of concern (VOCs) and variants of interest (VOIs). Currently, four VOCs (Alpha, Beta, Delta, and Gamma) and seven VOIs (Epsilon, Zeta, Eta, Theta, Iota, Kappa, and Lambda) of SARS-CoV-2 have been identified in worldwide circulation. Here, we investigated the interactions of the receptor-binding domain (RBD) of five SARS-CoV-2 variants with the human angiotensin-converting enzyme 2 (hACE2) receptor in host cells, to determine the extent of molecular divergence and the impact of mutation, using protein-protein docking and dynamics simulation approaches. Along with the wild-type (WT) SARS-CoV-2, this study included the Brazilian (BR/lineage P.1/Gamma), Indian (IN/lineage B.1.617/Delta), South African (SA/lineage B.1.351/Beta), United Kingdom (UK/lineage B.1.1.7/Alpha), and United States (US/lineage B.1.429/Epsilon) variants. The protein-protein docking and dynamics simulation studies revealed that these point mutations considerably affected the structural behavior of the spike (S) protein compared to the WT, which also affected the binding of RBD with hACE2 at the respective sites. Additional experimental studies are required to determine whether these effects have an influence on drug–S protein binding and its potential therapeutic effect.


2020 ◽  
Author(s):  
Hasan Cubuk ◽  
Mehmet Ozbil

<p>The new type of coronavirus, SARS-CoV-2 has affected more than 6.3 million people worldwide. Since the first day the virus has been spotted in Wuhan, China, there are numerous drug design studies conducted all over the globe. Most of these studies target the receptor-binding domain of spike protein of SASR-CoV-2, which is known to bind human ACE2 receptor and SARS-CoV-2 main protease, vital for the virus’ replication. However, there might be a third target, human furin protease, which cleaves the virus’ S1-S2 domains taking active role in its entry into the host cell. In this study we docked five clinically used drug molecules, favipiravir, hydroxychloroquine, remdesivir, lopinavir, and ritonavir onto three target proteins, receptor binding domain of SARS-CoV-2 spike protein, SARS-CoV-2 main protease, and human furin protease. Results of molecular docking simulations revealed that human furin protease might be targeted against COVID-19. Remdesivir, a nucleic acid derivative, strongly bound to the active site of this protease, suggesting this molecule can be used as a template for designing novel furin protease inhibitorsto fight with the disease. Protein-drug interactions revealed at the molecular level in this study can pave the way for better drug design for each specific target.<br></p>


2021 ◽  
Vol 22 (13) ◽  
pp. 7001
Author(s):  
Kirsten Cameron ◽  
Lina Rozano ◽  
Marco Falasca ◽  
Ricardo L. Mancera

ACE2 has been established as the main receptor for SARS-CoV-2. Since other human coronaviruses are known to use co-receptors for viral cell entry, it has been suggested that DPP4 (CD26) could be a potential additional binding target or co-receptor, supported by early molecular docking simulation studies. However, recent biophysical studies have shown this interaction to be very weak. We have conducted detailed molecular docking simulations to predict the potential binding interactions between the receptor binding domain (RBD) of the spike protein of SARS-CoV-2 and DPP4 and compare them with the interactions observed in the experimentally determined structure of the complex of MERS-CoV with DPP4. Whilst the overall binding mode of the RBD of SARS-CoV-2 to DPP4 is predicted to be similar to that observed in the MERS-CoV-DPP4 complex, including a number of equivalent interactions, important differences in the amino acid sequences of SARS-CoV-2 and MERS-CoV result in substantially weakened interactions with DPP4. This is shown to arise from differences in the predicted proximity, nature and secondary structure at the binding interface on the RBD of SARS-CoV-2. These findings do not support DPP4 being a significant receptor for SARS-CoV-2.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Sohail S ◽  
◽  
Rana H ◽  
Awan DS ◽  
Sohail F ◽  
...  

Severe acute respiratory syndrome coronavirus has a great role in causing respiratory illness in humans and has the most important relationship of its spike proteins with host ACE-2 receptors. After entry into the human body, the viral S protein receptor-binding domain binds to human ACE-2 receptor. Two modes explained in this paper of an ACE-2 shedding. The shedding induces the process of viral entry to host cells by binding SARS-CoV-2 proteins. The residues of arginine and lysine in the ACE-2 receptor from 652 to 659 amino acid cleavage by ADAM17 but in TMPRSS2 the residues can be seen on amino acid from 697 to 716. Corona virus genome shows some structural proteins that are responsible for the cellular entry and facilitate the attachment of a virus to the host cell. Virus recognizes the attachment site and binds with it and enter into the cell. Spike protein is split from the cleavage site along its two subunits S1 and S2 then during this process. S2 subunit release RBD (Receptor- Binding Domain) of S1 mediated to the ACE-2. The RBD of S1 consists of 200 amino acid domains. The unknown protein B6ATI which is a neutral amino acid transporter located in ileum is the basic cause for formation of ACE-2 homodimer. In this way S1 domain provides site for another S2 domain. This leads to concealing of the ACE-2 ectodomain cleavage-sites, shedding. It prevents endocytosis of the receptor blocking a major pathway in the viral entry.


Sign in / Sign up

Export Citation Format

Share Document