scholarly journals Formulation and Evaluation of Metoprolol Controlled Release Formulations

Author(s):  
Ramakrishna Vydana ◽  
Chandra Sekhar Kothapalli Bonnoth

Aim: The main perspective of the present research work was to prepare Metoprolol floating controlled release formulations. Methodology: After performing the characterization studies, Metoprolol tablets were prepared using various concentrations of poly ethylene oxide (PEO) WSR 303 (5% to 30%) by direct compression method. Formulations MP1 and MP6 were formulated using PEO WSR 303. Various pre and post compression parameters were evaluated. Dissolution studies were performed for the prepared tablets using dissolution medium of 0.1N hydrochloric acid. Results: Characterization studies like Fourier Transform Infra Red (FTIR) and Scanning Electron Microscopy (SEM) for Metoprolol, Polyethylene oxide WSR 303 and their combination were carried out, which revealed that there is no interaction between drug and polymer. The dissolution studies showed the controlled release pattern of Metoprolol up to 24h. The formulation MP5 prepared using 25% w/w of PEO WSR 303 showed maximum drug release of 98.22% at 24h. Similar drug release profile was observed for MP6 which was formulated using 30%w/w PEO WSR 303. These two formulations were further added with various concentrations of sodium bicarbonate (5% to 15%) and citric acid (2.5% to 10%) which enhanced floating of drug. Formulation MP8 containing 10% of sodium bicarbonate with 25% PEO WSR 303 showed less buoyancy lag time and prolonged drug release. Formulation MP15 showed very less buoyancy lag time of 4sec. Conclusion: Thus the prepared Metoprolol floating tablets showed prolonged drug release which could be a promising formulation for anti-hypertensive patients.

Author(s):  
Ramakrishna Vydana ◽  
Chandra Sekhar Kothapalli Bonnoth ◽  
Vidyadhara Suryadevara ◽  
Sandeep Doppalapudi

Aim: Dosing frequency is a major hurdle in geriatrics with frequent drug administration. In such cases, oral controlled release floating formulations are helpful which causes reduction in dosing frequency and fluctuation of drug levels in plasma. The main aim of the current research was to prepare Captopril floating controlled release formulations in order to achieve extended gastric retention in the upper GIT. Methodology: Captopril tablets were prepared using different concentrations of poly ethylene oxide water soluble resin (PEO WSR) 303 (5% to 30%) by direct compression technique. Captopril formulations CSP1 and CSP6 were formulated using PEO WSR 303. Pre and post compression parameters were evaluated. Dissolution studies were performed for the prepared tablets using 0.1N hydrochloric acid as dissolution medium. Results: The dissolution studies showed controlled drug release up to 12h. The formulation CSP5 prepared using 25% w/w of PEO WSR 303 showed maximum drug release of 97.97% at 12h. Almost similar drug release profile was also observed for CSP6 which was prepared using 30%w/w PEO WSR 303. These two formulations were further added with various concentrations of sodium bicarbonate (5% to 15%) and citric acid (2.5% to 10%) which enhanced floating of drug in Gastro intestinal tract (GIT). Formulation CSP8 containing 10% of sodium bicarbonate with 25% PEO WSR 303 showed less buoyancy lag time and prolonged drug release. Formulation CSP15 showed very less buoyancy lag time of 5sec. Characterization studies like Fourier Transform Infra Red spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were also carried out. Conclusion: The prepared Captopril floating tablets could be an alternative formulation for prolonged drug release.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 110
Author(s):  
Muhammad Suhail ◽  
Chih-Wun Fang ◽  
Arshad Khan ◽  
Muhammad Usman Minhas ◽  
Pao-Chu Wu

The purpose of the current investigation was to develop chondroitin sulfate/carbopol-co-poly(acrylic acid) (CS/CBP-co-PAA) hydrogels for controlled delivery of diclofenac sodium (DS). Different concentrations of polymers chondroitin sulfate (CS), carbopol 934 (CBP), and monomer acrylic acid (AA) were cross-linked by ethylene glycol dimethylacrylate (EGDMA) in the presence of ammonium peroxodisulfate (APS) (initiator). The fabricated hydrogels were characterized for further experiments. Characterizations such as Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR) were conducted to understand the surface morphology, thermodynamic stability, crystallinity of the drug, ingredients, and developed hydrogels. The swelling and drug release studies were conducted at two different pH mediums (pH 1.2 and 7.4), and pH-dependent swelling and drug release was shown due to the presence of functional groups of both polymers and monomers; hence, greater swelling and drug release was observed at the higher pH (pH 7.4). The percent drug release of the developed system and commercially available product cataflam was compared and high controlled release of the drug from the developed system was observed at both low and high pH. The mechanism of drug release from the hydrogels followed Korsmeyer–Peppas model. Conclusively, the current research work demonstrated that the prepared hydrogel could be considered as a suitable candidate for controlled delivery of diclofenac sodium.


2010 ◽  
Vol 654-656 ◽  
pp. 2269-2272
Author(s):  
Rui Xia Yu ◽  
Xiang Yang Zhou ◽  
Zeng Zhao

The research work reported in this paper design a novel biodegradable multichamber microstructure for implantable drug controlled release by introducing the approach of topology optimization. It is therefore highly desirable to overcome these restrictions that pre-defined topology of the device result in difficulty to obtain a linear or pulsed drug release profile. The designed biodegradable multichamber microstructure is fabricated using UV-LIGA microfabrication and Micro-molding technique. The simulation results show that the multichamber microstructure exhibits a preferable linear drug release profile.


2012 ◽  
Vol 62 (3) ◽  
pp. 395-410 ◽  
Author(s):  
Kunal P. Pagar ◽  
Pradeep R. Vavia

The present research work deals with the development of a time delayed chronotherapeutic formulation of felodipine (FD) aimed at rapid drug release after a desired lag time in the management of hypertension. The developed system comprises a drug core embedded within a swellable layer and coated with an insoluble, water permeable polymeric system. FD cyclodextrin complex was used as an active core while ethyl cellulose was used as an effective coating layer. Dissolution studies of the complex revealed that there was a 3-fold increase in dissolution of the complex compared to plain FD. This dissolution enhancement and rapid drug release resulted from FD amorphisation, as confirmed by XRD, DSC and SEM studies. FTIR and 1H NMR studies confirmed the complex formation between FD and cyclodextrin based on the observed hydrogen bond interactions. FD release was adequately adjusted by using a pH independent polymer, i.e., ethyl cellulose, along with dibutyl phthalate as plasticizer. Influence of formulation variables like polymer viscosity, plasticizer concentration, super disintegrant concentration in the swellable layer and percent coating weight gain was investigated to characterize the lag time. Upon permeation of water, the core tablet swelled, resulting in the rupture of the coating layer, followed by rapid drug release. The developed formulation of FD showed a lag time of 5-7 h, which is desirable for chronotherapeutic application.


Author(s):  
R. Shireesh Kiran ◽  
B. Chandra Shekar ◽  
B. Nagendra Babu

In the current study, gastro-retentive tablets of Ritonavir was developed to increase its oral bioavailability using hydrophilic polymers HPMC K 4M, K 15M, and K 100M as release retarding agents. Polyox WSR 303 was chosen as resin, sodium bicarbonate was used as effervescent agents. The tablets were prepared by direct compression method and FTIR studies revealed that there is no interaction between the drug and polymers used for the formulation. Among all the formulations F21 containing HPMC K 100M, Crospovidone, Polyox WSR 303 and sodium bicarbonate, as gas generating agent was choosen as optimized formulation based on the evaluation parameters, floating lag time (33 sec) and total floating time (>24 h) and in vitro dissolution studies. From in vitro dissolution studies, the optimized formulation F21 and marketed product was shown 98.67% and 95.09 ± 5.01% of drug release respectively. From in vivo bioavailability studies, after oral administration of floating tablet containing 100 mg Ritonavir, the Cmax, Tmax, and AUC0–∞ of optimized gastroretentive formulation were found to be 30.11 ± 1.16μg/mL, 8.00±1.23 h and 173 ± 26.34μg*h/ml, respectively. Cmax and AUC values of optimized formulation were found to be significantly higher than of marketed product, where longer gastric residence time is an important condition for prolonged or controlled drug release and also for improved bioavailability.


2014 ◽  
Vol 1 (1) ◽  
pp. 8-23 ◽  
Author(s):  
Sarmila Shrestha ◽  
Dharma Prasad Khanal ◽  
Panna Thapa

Twenty three different tablet formulations of alprazolam were prepared using Polymer like hydroxypropylmethyl cellulose (HPMC K4M, HPMC K15M and HPMC K100M) in the concentration of 5 – 50 % of total weight of tablets and combination of HPMC K15M and HPMC K100M with ethyl cellulose (EC) was formulated by using wet granulation method. Drug formulation containing 1.0 mg, 1.5 mg, 5 mg, 10 mg and 15 mg alprazolam per tablet maintaining constant HPMC K15M concentration was also developed.The in-vitro dissolution studies of the formulated and marketed product in USP type II apparatus showed that the drug release is dependent upon the drug: polymer ratio; also molecular weight of the polymer and solubility of loaded drug. With increasing concentration and molecular weight of polymer, drug release was found to be decreased. When formulating the tablets the method used whether direct compression or wet granulations also affect the release of the drug from matrix. Wet granulation method by using 40 % HPMC K15M in combination with 5 % EC was found to be most suitable controlled release alprazolam tablet as drug release was found to be appreciable in this formulation. When loading dose of alprazolam was increased, drug release was found to be tremendously decreased because of the poor solubility of alprazolam in water. When one-way ANOVA was applied for various formulated and marketed tablets it was found that there is no significant difference (p > 0.05) in drug release rate among formulation similarly model independent methods was also applied such as similarity and dissimilarity factor and found that there is no significant difference between these formulations.DOI: http://dx.doi.org/10.3126/jmmihs.v1i1.9896 Journal of Manmohan Memorial Institute of Health Sciences Vol.1(1) 2011; 8-23


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1834 ◽  
Author(s):  
Ullah ◽  
Khan ◽  
Choi ◽  
Kim

: This work demonstrates a simple approach for coating a porous polymer layer on stainless-steel (SS) microneedles characterized by a pH-responsive formulation for self-regulated drug delivery. For many drug-delivery applications, the release of therapeutic agents in an acidic microenvironment is desirable. Acid-sensitive polymers and hydrogels were extensively explored, but easily prepared polymeric microcarriers that combine acid sensitivity and biodegradability are rare. Here, we describe a simple and robust method of coating a porous polymer layer on SS microneedles (MNs) that release a model drug (lidocaine) in a pH-responsive fashion. It was constructed by packing the model drug and a pH-sensitive component (sodium bicarbonate) into the pores of the polymer layer. When this acid-sensitive formulation was exposed to the acidic microenvironment, the consequent reaction of protons (H+) with sodium bicarbonate (NaHCO3) yielded CO2. This effect generated pressure inside the pores of the coating and ruptured the thin polymer membrane, thereby releasing the encapsulated drug. Scanning electron micrographs showed that the pH-sensitive porous polymer-coated MNs exposed to phosphate-buffered saline (PBS) at pH 7.4 were characterized by closed pores. However, MNs exposed to PBS at pH 5.5 consisted of open pores and the thin membrane burst. The in vitro studies demonstrated the pH sensitivity of the drug release from porous polymer-coated MNs. Negligible release was observed for MNs in receiving media at pH 7.4. In contrast, significant release occurred when the MNs were exposed to acidic conditions (pH 5.5). Additionally, comparable results were obtained for drug release in vitro in porcine skin and in PBS. This revealed that our developed pH-responsive porous polymer-coated MNs could potentially be used for the controlled release of drug formulations in an acidic environment. Moreover, the stimuli-responsive drug carriers will enable on-demand controlled release profiles that may enhance therapeutic effectiveness and reduce systemic toxicity.


2017 ◽  
Vol 9 (2) ◽  
pp. 1 ◽  
Author(s):  
Ajit Kulkarni ◽  
Trushali Mandhare ◽  
Nagesh Aloorkar

Objective: To explore a novel natural polymer, pullulan for controlling the release of fenoverine from matrix tablets and to elucidate the release kinetics of fenoverine from pullulan and HPMC matrices.Methods: In this study we formulated monolithic matrix tablets containing of fenoverine as controlled-release tablets by direct compression using pullulan, HPMC (Hydroxypropyl methyl cellulose) K4M and HPMC K100M polymers and evaluated for hardness, thickness, friability, weight variation drug content, in vitro drug release characteristics and FTIR (Fourier transform infrared spectroscopy) and DSC (Differential scanning calorimetry) study.Results: All the formulations showed compliance with pharmacopoeial standards. FTIR and DSC study indicated the absence of interaction between fenoverine and excipients. The formulation was optimized on the basis of acceptable tablet properties and in vitro drug release. The results of dissolution studies indicated that the formulation F5 [drug to polymer 1: 0.35] exhibited highest % cumulative drug release of 96.82±0.75 % at the end of 12 h. Optimised batch F5 showed super case II transport mechanism and followed zero order release kinetics. Short-term stability studies of the optimized formulation indicated that there were no significant changes observed in hardness, drug content and in vitro dissolution studies at the end of three months period. Similarity factor f2 was found to be 89, which indicated similar dissolution profiles before and after stability study.Conclusion: Based on above results we conclude that pullulan can be used as a polymer for retarding the release of drug from matrix formulations.Keywords: Pullulan, Fenoverine, Hydroxypropyl methyl cellulose, Controlled release, In vitro


1970 ◽  
Vol 7 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Ferdous Khan ◽  
Md Shaikhul Millat Ibn Razzak ◽  
Md Ziaur Rahman Khan ◽  
Kazi Rashidul Azam ◽  
Sams Mohammad Anowar Sadat ◽  
...  

This investigation describes the preparation and in vitro evaluation of gastroretentive floating tablets of theophylline. Hydrophilic polymer METHOCEL K4M was used for its gel forming and release controlling properties. Sodium bicarbonate and citric acid were incorporated as gas generating agents. The effects of soluble components (sodium bicarbonate and citric acid), gel forming agent (METHOCEL K4M) and dose variation on drug release profile and floating properties were investigated. It has been observed that in all cases increase of the amount of floating agent caused a decrease of the floating lag time. Increase of theophylline load showed an increase of the floating lag time, which was independent of floating agent content. The release mechanisms were explored and explained with zero order, first order, Higuchi, Korsmeyer and Hixon-Crowell equations. The release rate, extent and mechanisms were found to be governed by the content of polymer and floating agent. The content of active ingredient was also a vital factor in controlling drug release pattern. It was found that polymer content and amount of floating agent significantly affected the time required for 50% of drug release (T50%), percentage drug release after 8 hours, release rate constant, and diffusion exponent (n). Kinetic modeling of dissolution profiles revealed that the drug release mechanism could range from diffusion controlled to case II transport, which was mainly dependent on presence of relative amount of theophylline, polymer and floating agent. Key words: Gastroretention, Floating tablet, Theophylline  DOI = 10.3329/dujps.v7i1.1220 Dhaka Univ. J. Pharm. Sci. 7(1): 65-70, 2008 (June)


Clay Minerals ◽  
2015 ◽  
Vol 50 (1) ◽  
pp. 11-22 ◽  
Author(s):  
D. Krajišnik ◽  
A. Daković ◽  
A. Malenović ◽  
M. Kragović ◽  
J. Milić

AbstractThe sorption of ibuprofen by modified natural zeolite composites at three concentration levels (10, 20 and 30 mmol/100 g) of cationic surfactants – benzalkonium chloride and cetylpyridinium chloride, in a buffer solution (pH 7.4), was studied. Characterization of the composites before and after ibuprofen sorption was performed by drug sorption and isotherm studies, zeta potential and Fourier Transform infrared spectroscopic analysis. The biopharmaceutical performance of cationic surfactant-modified zeolites as drug formulation excipients was evaluated by in vitro dissolution experiments from the composites with medium surfactant contents. The drug sorption was influenced by the surfactant type and amount used for the zeolite modification. Prolonged drug release over a period of 8 h (up to ~40%) was achieved with both groups of samples. The kinetic analysis showed that the drug release profiles were best fitted with the Higuchi and the Bhaskar models, indicating a combination of drug diffusion and ion exchange as the predominant release mechanisms.


Sign in / Sign up

Export Citation Format

Share Document