scholarly journals Preliminary Screening for Antibacterial Properties of the Male Flowers of Phoenix dactylifera

Author(s):  
Emad M. Abdallah

Objective: The aim of this study was to evaluate the antibacterial potential of the male flowers of Phoenix dactylifera (date palm tree) against five Gram-positive and five Gram-negative bacteria. Methods: Male flowers were collected and extracted by maceration using 80% methanol and the antibacterial activity was determined using cup-plate diffusion test, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests. Results: The methanol extract of male flowers of Phoenix dactylifera showed varying degrees of antibacterial activity against tested bacterial strains, the most susceptible Gram-positive bacteria were Bacillus cereus and Streptococcus pneumonia which recorded 12.2±0.3 and 9.0±0.0 mm zone of inhibition (ZI), MIC values were 50 and 100 mg/ml, MBC values were 200 and ˂200 mg/ml, respectively. The most susceptible Gram-negative bacteria were Proteus vulgaris, Klebsiella pneumonia and Pseudomonas aeruginosa which recorded 10.0±0.0, 9.7±0.3 and 9.0±0.0 mm ZI, MIC values were 100 mg/ml and MBC values were 200 mg/ml, respectively.  Based on MBC/MIC ratio, the extract has some degree of bactericidal effect. However, the results were not competitive with the standard drug (Chloramphenicol). Conclusion: As a result, the tested methanol extract of male flowers of date palm tree exhibited some degree of antibacterial activity with a bactericidal property. More future studies such as fractionation process are required to isolate and investigate its bioactive compounds.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4804 ◽  
Author(s):  
Kumudu R.V. Bandara ◽  
Chayanika Padumadasa ◽  
Dinithi C. Peiris

Passiflora suberosa L. belonging to the family Passifloraceae is an important medicinal plant used in traditional medicinal system in Sri Lanka to treat diabetes, hypertension and skin diseases. We extracted P. suberosa leaves under reflux conditions using different solvents (hexane, chloroform, methanol and water), then subjected to phytochemical screening. Alkaloids, flavonoids and saponins and saponins and anthraquinones were present in hexane and chloroform extracts. Alkaloids, unsaturated sterols, triterpenes, saponins, flavonoids and tannins were observed in both methanol and aqueous extracts. Proanthocyanidins were observed only in the aqueous extract. Hence, aqueous and methanol extracts with most classes of phytochemicals present were subjected to antimicrobial, antioxidant, antihaemolytic activities and Brine shrimp lethality studies. Antibacterial activity and minimum inhibition concentrations were evaluated using three Gram-positive (Bacillus subtilis, Staphylococcus aureus and Enterococcus faecium) and three Gram-negative bacteria (Pseudumonas aeruginosa, Salmonella typhimuriam and Escherichia coli). The results indicated that only the methanol extract of P. suberosa exhibited antibacterial activities against all the strains of Gram-negative and Gram-positive bacterial with stronger activity against Gram-negative bacteria. DPHH (2,2-diphenyl-1-picrylhydrazy) scavenging assay was adopted to evaluate antioxidant properties while antihaemolytic and toxic activities were studied respectively using cow blood and Brine shrimp lethality assay. The IC50 values of the aqueous extract in both antioxidant and antihaemolytic assays were significantly lower than the standard ascorbic acid. Similar results were observed in the Brine shrimp lethality assay. In conclusion both aqueous and methanol extracts of P. suberosa leaves showed the presence of majority of phytochemicals including proanthocyanidins. Antibacterial activity was obtained only for methanol extract with better activity against Gram-negative bacteria. The aqueous extract showed better antioxidant, antihaemolytic and toxic activities than the methanol extract and their respective standards. Further investigations on the chemical composition and possible isolation of active ingredients is warranted.


2019 ◽  
Vol 10 (4) ◽  
pp. 3535-3543
Author(s):  
Mustafa M. AL-Hakiem ◽  
Rita S. Elias ◽  
Munther A. Mohammed-Ali

New series of Schiff base compounds obtained from sulfa drugs have been synthesized by the reaction of sulfonamide compounds (sulfadiazine, sulfapyridine, sulfamethazine, or sulfamerazine) with corresponding aromatic aldehydes (3-pyridinecarboxaldehyde or 4-pyridinecarboxaldehyde). The synthesized compounds were characterized by FT-IR, ESI-Mass, and 1H-NMR spectroscopy to confirm the chemical structures of synthesized compounds. The purity of all synthesized compounds were verified using pre-coated TLC (MERCK) plates using dichloromethane: methanol (9:1) solvent system. The chromatographic plates were viewed under ultraviolet(UV) light at 254 nm The sulfonamide Schiff base compounds were tested for antibacterial evaluation against two pathogenic Gram-positive bacteria (Staphylococcus aureus, Streptococcus spp.) and two pathogenic Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia). The antibacterial activity of synthesized compounds was evaluated by assessing the inhibitory concentration by measuring their inhibition zone versus certain kinds of standard antibiotics with concentrations (500, 750, and 1000) μg /ml. Most synthesized compounds at high concentration were moderately active against all tested bacteria ,compound SH7 showed best antibacterial activity for both (Gram-positive and Gram-negative) bacteria while SH8 compound exhibited moderate antibacterial activity against Gram-positive bacteria and weak activity (<10 mm) against Gram-negative bacteria and all synthesized compounds were less antibacterial activity for all tested bacterial strains than standard drugs.


2020 ◽  
Vol 12 (3) ◽  
pp. 354-364
Author(s):  
Preeti Mishra ◽  
Anita Sha ◽  
Poulami Bhakat ◽  
Sudipta Mondal ◽  
Animesh Kumar Mohapatra

Achyranthus aspera is a common weed and known for various medicinal properties. The aim of the present study was to evaluate the antibacterial activities of different concentrations of methanolic and petroleum-ether leaf extracts of A. aspera against three gram-positive bacteria (Micrococcus luteus, Bacillus subtilis, Streptococcus mitis) and six gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Salmonella typhi, Salmonella paratyphi A (MTCC-3220), Shigella flexneri). The phytochemical screening of the leaf extract of the herb indicated the presence of flavonoides, tannins, saponins, polyphenolic compounds, alkaloids and glycosides. The methanolic extract at the highest concentration of 10 mg/ml showed prominent antibacterial activity in two gram-negative bacteria, i.e. K. pneumoniae and E. coli with 22 mm zone of inhibition and one gram-positive bacterium i.e. M. luteus with 19 mm zone of inhibition. The methanolic extract at 0.0781mg/ml concentration showed least antibacterial activity against all tested bacteria produced a zone of inhibition between 10 to 12 mm while petroleum ether extract of same concentration had moderate antibacterial activity against S. flexneri (15 mm zone of inhibition). It can be concluded that novel compounds like flavonoids, tannins, saponins, alkaloid, and polyphenolic compounds in A. aspera leaves have potent antimicrobial property.


2016 ◽  
Vol 50 (1) ◽  
Author(s):  
Oktay Ozkan ◽  
K. Metiner ◽  
Asim Kart ◽  
S. Ozkaya

In this study, 4 different extracts of <italic>Thymus praecox subsp. grossheimii var. grossheimii</italic> (Ronniger) an endemic species of genus Thymus were investigated on gram positive and gram negative test bacteria for the antibacterial activity. The plant extracts were obtained via Soxhlet method, and the antibacterial activities were determined by macrodilution liquid (tube) method (MIC). Results indicated that 4 different extracts at different concentrations showed antibacterial activities on both gram positive and gram negative strains. The highest antibacterial activity was observed in acetone extract against <italic>Bacillus cereus</italic>, whereas the lowest activity was seen in methanol extract against <italic>Klebsiella pneumonia</italic>, <italic>Proteus mirabilis, Pseudomonas aeruginosa</italic> and <italic>Salmonella Enteritidis.</italic> In conclusion, it was determined that <italic>Thymus praecox subsp. grossheimii var. grossheimii</italic> (Ronniger) has an antibacterial activity against gram positive and gram negative test bacteria.


Author(s):  
Sushma Vashisht ◽  
Manish Pal Singh ◽  
Viney Chawla

The methanolic extract of the resin of Shorea robusta was subjected to investigate its antioxidant and antibacterial properties its utility in free radical mediated diseases including diabetic, cardiovascular, cancer etc. The methanol extract of the resin was tested for antioxidant activity using scavenging activity of DPPH (1,1-diphenyl-2-picrylhydrazil) radical method, reducing power by FeCl3 and antibacterial activity against gram positive and gram negative bacteria using disc diffusion method. The phytochemical screening considered the presence of triterpenoids, tannins and flavoniods. Overall, the plant extract is a source of natural antioxidants which might be helpful in preventing the progress of various oxidative stress mediated diseases including aging. The half inhibition concentration (IC50) of resin extract of Shorea robusta and ascorbic acid were 35.60 µg/ml and 31.91 µg/ml respectively. The resin extract exhibit a significant dose dependent inhibition of DPPH activity. Antibacterial activity was observed against gram positive and gram negative bacteria in dose dependent manner.Key Words: Shorea robusta, antioxidant, antibacterial, Disc-diffusion, DPPH.


Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


2020 ◽  
Vol 16 (4) ◽  
pp. 481-488
Author(s):  
Heli Sanghvi ◽  
Satyendra Mishra

Background: Curcumin, one of the most important pharmacologically significant natural products, has gained significant consideration among scientists for decades since its multipharmacological activities. 1, 3-Dicarbonyl moiety of curcumin was found to be accountable for the rapid degradation of curcumin molecule. The aim of present work is to replace 1, 3-dicarbonyl moiety of curcumin by pyrazole and phenylpyrazole derivatives with a view to improving its stability and to investigate the role of substitution in N-phenylpyrazole curcumin on its antibacterial activity against both Gram-positive as well as Gram-negative bacteria. Methods: Pyrazole derivatives of curcumin were prepared by heating curcumin with phenyhydrazine/ substituted phenyhydrazine derivatives in AcOH. The residue was purified by silica gel column chromatography. Structures of purified compounds were confirmed by 1H NMR and Mass spectroscopy. The synthesized compounds were evaluated for their antibacterial activity by the microdilution broth susceptibility test method against gram positive (S. aureus) and gram negative (E. coli). Results: Effects of substitution in N-phenylpyrazole curcumin derivatives against S. aureus and E. coli were studied. The most active N-(3-Nitrophenylpyrazole) curcumin (12) exhibits twenty-fold more potency against S. aureus (MIC: 10μg/mL)) and N-(2-Fluoroophenylpyrazole) curcumin (5) fivefold more potency against E. coli (MIC; 50 μg/mL) than N-phenylpyrazole curcumin (4). Whereas, a remarkable decline in anti-bacterial activity against S. aureus and E. coli was observed when electron donating groups were incorporated in N-phenylpyrazole curcumin (4). Comparative studies of synthesized compounds suggest the effects of electron withdrawing and electron donating groups on unsubstituted phenylpyrazole curcumin (4). Conclusion: The structure-activity relationship (SAR) results indicated that the electron withdrawing and electron donating at N-phenylpyrazole curcumin played key roles for their bacterial inhibitory effects. The results of the antibacterial evaluation showed that the synthesized pyrazole derivatives of curcumin displayed moderate to very high activity in S. aureus. In conclusion, the series of novel curcumin derivatives were designed, synthesized and tested for their antibacterial activities against S. aureus and E. coli. Among them, N-(3-Nitrophenylpyrazole curcumin; 12) was most active against S. aureus (Gram-positive) and N-(2-Fluoroophenylpyrazole) curcumin (5) against E. coli (Gram-negative) bacteria.


2020 ◽  
Author(s):  
Rekhachandran Prasanna Ramachandran ◽  
Archana Valliyamma ◽  
Nitha Nellithanathu Thomas ◽  
Mangalaraja Ramalinga Viswanathan ◽  
Boby Theophilofe Edwin ◽  
...  

CrystEngComm ◽  
2018 ◽  
Vol 20 (24) ◽  
pp. 3353-3362 ◽  
Author(s):  
Ian R. Colinas ◽  
Mauricio D. Rojas-Andrade ◽  
Indranil Chakraborty ◽  
Scott R. J. Oliver

Two novel Zn-based coordination polymers with unique structural properties display an exceptional antibacterial activity against Gram-positive and Gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document