scholarly journals RUNUP RECIPE FOR PERIODIC WAVES ON UNIFORMLY SLOPING BEACHES

1966 ◽  
Vol 1 (10) ◽  
pp. 21 ◽  
Author(s):  
Wm. G. Van Dorn

The shoaling enhancement of small-amplitude, dispersive wave trains traveling over uniform, impermeable slopes was observed in a specially-constructed wave channel, where the reproducible wave elevation measurement accuracy was about .0005-in. These observations substantially support the enhancement predicted from linear theory (conservation of energy flux) except in very shallow water and on very steep slopes, where accelerative effects become important. On the hypothesis that small-amplitude runup theory might be similarly valid for periodic waves of finite height, provided that the positive incident wave amplitude Is replaced by the local crest height above still water, this theory was modified to include the effect of the superelevation under a wave crest due to profile asymmetry. The modified theory is shown to agree acceptably with runup observations of larger waves previously reported - both for breaking and non-breaking waves. Because solutions to the modified theory cannot conveniently be obtained by manual calculation, a nomograph chart is included, from which runup predictions can be easily made, given only the wave height, period, and water depth a wavelength or so from shore, and the beach slope.

1976 ◽  
Vol 1 (15) ◽  
pp. 25 ◽  
Author(s):  
Edward B. Thornton ◽  
James J. Galvin ◽  
Frank L. Bub ◽  
David P. Richardson

The sight and sound of breaking waves and surf is so familiar and enjoyable that we tend to forget how little we really understand about them. Why is it, that compared to other branches of wave studies our knowledge of breaking waves is so empirical and inexact? The reason must lie partly in the difficulty of finding a precise mathematical description of a fluid flow that is in general nonlinear and time-dependent. The fluid accelerations can no longer be assumed t o be small compared t o gravity, as in Stokes's theory for periodic waves and the theory of cnoidal waves in shallow water, nor is the particle velocity any longer small compared to the phase velocity. The aim of this paper is to bring together s ome recent contributions to the calculation both of steep symmetric waves and of time-dependent surface waves. These have a bearing on the behaviour of whitecaps in deep water and of surf in the breaker zone . Since spilling breakers in gently shoaling water closely resemble solitary waves, we begin with the description of solitary waves of limiting amplitude, then discuss steep waves of arbitrary height. The observed intermittency of whitecaps is discussed in terms of the energy maximum, as a function of wave steepness, In Sections 6 and 7 a simpler description of steady symmetric waves is proposed, using an asymptotic expression for the flow near the wave crest. Finally we describe a new numerical technique (MEL, or mixed Eulerian-Lagrangian) with which it has been found possible to follow the development of periodic waves past the point when overturning takes place. Measurement of waves, and vertical and horizontal water particle velocities were made of spilling, plunging and surging breakers at sandy beaches in the vicinity of Monterey, California. The measured breaking waves, derived characteristically from swell-type waves, can be described as highly nonlinear. Spectra and cross spectra were calculated between waves and velocities. Secondary waves were noted visually and by the strong harmonics in the spectra. The strength of the harmonics is related to the beach steepness, wave height and period. The phase difference between waves and horizontal velocities indicates the unstable crest of the wave leads the velocities on the average by 5-20 degrees. Phase measurements between wave gauges in a line perpendicular to the shore show breaking waves to be frequency nondispersive indicating phase-coupling of the various wave components. The coherence squared values between the sea surface elevation and the horizontal water particle velocity were high in all runs, ranging above 0.8 at the peak of the spectra. The high coherence suggests that most of the motion in the body of breaking waves is wave-induced and not turbulent.


Author(s):  
Gu¨nther F. Clauss ◽  
Robert Stu¨ck ◽  
Florian Stempinski ◽  
Christian E. Schmittner

For the analysis of loads and motions of marine structures in harsh seaways precise information about the hydrodynamics of waves is required. While the surface motion of waves can easily be measured in physical wave tanks other critical characteristics such as the instantaneous particle velocity and acceleration as well as the pressure field, especially under the wave crest are difficult and time-consuming to obtain. Therefore a new method is presented to approximate the wave potential of a given instantaneous wave contour. Numerical methods — so called numerical wave tanks (NWTs) — are developed to provide the desired insight into wave hydrodynamics. A potential theory method based on the Finite Element method (Pot/FE), a RANSE (Reynolds-Averaged Navier-Stokes Equations) method applying VOF (Volume of Fluid) and a combination of both is utilized for the simulation of different model wave trains. The coupling of both CFD (computational fluid dynamics) solvers is a useful approach to benefit from the advantages of the two different methods: The Pot/FE solver WAVETUB (wave simulation code developed at Technical University Berlin) allows a very fast and accurate simulation of the propagation of nonbreaking waves while the RANSE/VOF solver has the capability of simulating breaking waves. Two different breaking criteria for the detection of wave breaking are implemented in WAVETUB for triggering the automated coupling process by data transfer at the interface. It is shown that an efficient method for the simulation of breaking wave trains including wave-structure interaction in 2D and 3D is established by the coupling of both CFD codes. All results are discussed in detail.


1976 ◽  
Vol 1 (15) ◽  
pp. 24 ◽  
Author(s):  
Michael S. Longuet-Higgins

The sight and sound of breaking waves and surf is so familiar and enjoyable that we tend to forget how little we really understand about them. Why is it, that compared to other branches of wave studies our knowledge of breaking waves is so empirical and inexact? The reason must lie partly in the difficulty of finding a precise mathematical description of a fluid flow that is in general nonlinear and time-dependent. The fluid accelerations can no longer be assumed t o be small compared t o gravity, as in Stokes's theory for periodic waves and the theory of cnoidal waves in shallow water, nor is the particle velocity any longer small compared to the phase velocity. The aim of this paper is to bring together s ome recent contributions to the calculation both of steep symmetric waves and of time-dependent surface waves. These have a bearing on the behaviour of whitecaps in deep water and of surf in the breaker zone . Since spilling breakers in gently shoaling water closely resemble solitary waves, we begin with the description of solitary waves of limiting amplitude, then discuss steep waves of arbitrary height. The observed intermittency of whitecaps is discussed in terms of the energy maximum, as a function of wave steepness, In Sections 6 and 7 a simpler description of steady symmetric waves is proposed, using an asymptotic expression for the flow near the wave crest. Finally we describe a new numerical technique (MEL, or mixed Eulerian-Lagrangian) with which it has been found possible to follow the development of periodic waves past the point when overturning takes place.


1997 ◽  
Vol 119 (3) ◽  
pp. 146-150 ◽  
Author(s):  
J. Skourup ◽  
N.-E. O. Hansen ◽  
K. K. Andreasen

The area of the Central North Sea is notorious for the occurrence of very high waves in certain wave trains. The short-term distribution of these wave trains includes waves which are far steeper than predicted by the Rayleigh distribution. Such waves are often termed “extreme waves” or “freak waves.” An analysis of the extreme statistical properties of these waves has been made. The analysis is based on more than 12 yr of wave records from the Mærsk Olie og Gas AS operated Gorm Field which is located in the Danish sector of the Central North Sea. From the wave recordings more than 400 freak wave candidates were found. The ratio between the extreme crest height and the significant wave height (20-min value) has been found to be about 1.8, and the ratio between extreme crest height and extreme wave height has been found to be 0.69. The latter ratio is clearly outside the range of Gaussian waves, and it is higher than the maximum value for steep nonlinear long-crested waves, thus indicating that freak waves are not of a permanent form, and probably of short-crested nature. The extreme statistical distribution is represented by a Weibull distribution with an upper bound, where the upper bound is the value for a depth-limited breaking wave. Based on the measured data, a procedure for determining the freak wave crest height with a given return period is proposed. A sensitivity analysis of the extreme value of the crest height is also made.


1984 ◽  
Vol 1 (19) ◽  
pp. 23 ◽  
Author(s):  
Yoshinobu Ogawa ◽  
Nobuo Shuto

Run-up of periodic waves on gentle or non-uniform slopes is discussed. Breaking condition and run-up height of non-breaking waves are derived "by the use of the linear long wave theory in the Lagrangian description. As to the breaking waves, the width of swash zone and the run-up height are-obtained for relatively gentle slopes (less than 1/30), on dividing the transformation of waves into dissipation and swash processes. The formula obtained here agrees with experimental data better than Hunt's formula does. The same procedure is applied to non-uniform slopes and is found to give better results than Saville's composite slope method.


2018 ◽  
Vol 48 (1) ◽  
pp. 3-27 ◽  
Author(s):  
Peter P. Sullivan ◽  
Michael L. Banner ◽  
Russel P. Morison ◽  
William L. Peirson

AbstractTurbulent flow over strongly forced steep steady and unsteady waves is simulated using large-eddy simulation (LES) with time t and space x varying wave height h(x, t) imposed as a lower boundary condition. With steady waves, h(x, t) is based on measurements of incipient and active breaking waves collected in a wind-wave flume, while a numerical wave code is used to generate an unsteady evolving wave packet (group). Highly intermittent airflow separation is found in the simulations, and the results suggest separation near a wave crest occurs prior to the onset of wave breaking. The form (pressure) drag is most sensitive to the wave slope, and the form drag can contribute as much as 74% to the total stress. Wind and scalar profiles from the LES display log-linear variations above the wave surface; the LES wind profiles are in good agreement with the measurements. The momentum roughness increases as the water surface changes from wind ripples to incipient breaking to active breaking. However, the scalar roughness decreases as the wave surface becomes rougher. This highlights major differences in momentum and scalar transport over a rough wavy surface. For a rapidly evolving, strongly forced wave group, the form drag is highly correlated with the wave slope, and intermittent separation is found early in the packet evolution when the local wave slope −∂h/∂x(x, t) ≥ 0.22. The packet root-mean-square wave slope is 0.084, but the form drag fraction is 2.4 times larger than a comparably forced steady wave. Thus, a passing wave group can induce unsteadiness in the wind stress.


The propagation of inhomogeneous plane waves in linear conservative systems is considered. It is assumed that the secular equation governing the propagation of a plane wave of slowness S has the form Q ( S ) = 0 where Q is independent of frequency. Dispersion enters via the boundary condi­tions. By using the point form of the conservation of energy equation results are obtained which relate the mean energy flux vector R ˜ with the mean energy density Ẽ for any number of wave trains. In particular for a single train of inhomogeneous plane waves it is shown that R ˜ . S + = Ẽ . The results are relevant in electromagnetism, elasticity and fluid dynamics.


1988 ◽  
Vol 1 (21) ◽  
pp. 161 ◽  
Author(s):  
Alfred Fuhrboter ◽  
Uwe Sparboom

Shock pressure phenomena due to breaking waves acting on sloping faces of sea dykes are focussed in this paper. The probability approach is pointed out and maximum shock pressure estimations are given for smooth and impermeable dyke slopes 1:4 and 1:6. An extension of the results to steeper and flatter slopes is proposed. Results of full-scale stability tests on concrete block slope revetments are also reported in this paper. For various structural solutions with granular and geotextile filter layers stability numbers are recommended. Initial block lifting is explained physically by pressure measurements. The full-scale experiments were carried out in the new research facility LARGE WAVE CHANNEL of the universities in Hannover and Braunschweig (Federal Republic of Germany).


1986 ◽  
Vol 1 (20) ◽  
pp. 68 ◽  
Author(s):  
Hans Peter Riedel ◽  
Anthony Paul Byrne

According to wave theories the depth limited wave height over a horizontal seabed has a wave height to water depth ratio (H/d) of about 0.8. Flume experiments with monochromatic waves over a horizontal seabed have failed to produce H/d ratios greater than 0.55. However designers still tend to use H/d 0.8 for their design waves. Experiments have been carried out using random wave trains in the flume over a horizontal seabed. These experiments have shown that the limiting H/d ratio of 0.55 applies equally well to random waves.


Sign in / Sign up

Export Citation Format

Share Document