Computational and Experimental Simulation of Nonbreaking and Breaking Waves for the Investigation of Structural Loads and Motions

Author(s):  
Gu¨nther F. Clauss ◽  
Robert Stu¨ck ◽  
Florian Stempinski ◽  
Christian E. Schmittner

For the analysis of loads and motions of marine structures in harsh seaways precise information about the hydrodynamics of waves is required. While the surface motion of waves can easily be measured in physical wave tanks other critical characteristics such as the instantaneous particle velocity and acceleration as well as the pressure field, especially under the wave crest are difficult and time-consuming to obtain. Therefore a new method is presented to approximate the wave potential of a given instantaneous wave contour. Numerical methods — so called numerical wave tanks (NWTs) — are developed to provide the desired insight into wave hydrodynamics. A potential theory method based on the Finite Element method (Pot/FE), a RANSE (Reynolds-Averaged Navier-Stokes Equations) method applying VOF (Volume of Fluid) and a combination of both is utilized for the simulation of different model wave trains. The coupling of both CFD (computational fluid dynamics) solvers is a useful approach to benefit from the advantages of the two different methods: The Pot/FE solver WAVETUB (wave simulation code developed at Technical University Berlin) allows a very fast and accurate simulation of the propagation of nonbreaking waves while the RANSE/VOF solver has the capability of simulating breaking waves. Two different breaking criteria for the detection of wave breaking are implemented in WAVETUB for triggering the automated coupling process by data transfer at the interface. It is shown that an efficient method for the simulation of breaking wave trains including wave-structure interaction in 2D and 3D is established by the coupling of both CFD codes. All results are discussed in detail.

2019 ◽  
Vol 24 ◽  
pp. 02011
Author(s):  
Giovanni Cannata ◽  
Francesco Gallerano ◽  
Federica Palleschi ◽  
Chiara Petrelli ◽  
Luca Barsi

Submerged shore-parallel breakwaters for coastal defence are a good compromise between the need to mitigate the effects of waves on the coast and the ambition to ensure the preservation of the landscape and water quality. In this work we simulate, in a fully three-dimensional form, the hydrodynamic effects induced by submerged breakwaters on incident wave trains with different wave height. The proposed three-dimensional non-hydrostatic finite-volume model is based on an integral form of the Navier-Stokes equations in σ-coordinates and is able to simulate the shocks in the numerical solution related to the wave breaking. The obtained numerical results show that the hydrodynamic phenomena produced by wave-structure interaction have features of three-dimensionality (undertow), that are locally important, and emphasize the need to use a non-hydrostatic fully-three-dimensional approach.


2021 ◽  
Vol 9 (5) ◽  
pp. 520
Author(s):  
Zhenyu Liu ◽  
Zhen Guo ◽  
Yuzhe Dou ◽  
Fanyu Zeng

Most offshore wind turbines are installed in shallow water and exposed to breaking waves. Previous numerical studies focusing on breaking wave forces generally ignored the seabed permeability. In this paper, a numerical model based on Volume-Averaged Reynolds Averaged Navier–Stokes equations (VARANS) is employed to reveal the process of a solitary wave interacting with a rigid pile over a permeable slope. Through applying the Forchheimer saturated drag equation, effects of seabed permeability on fluid motions are simulated. The reliability of the present model is verified by comparisons between experimentally obtained data and the numerical results. Further, 190 cases are simulated and the effects of different parameters on breaking wave forces on the pile are studied systematically. Results indicate that over a permeable seabed, the maximum breaking wave forces can occur not only when waves break just before the pile, but also when a “secondary wave wall” slams against the pile, after wave breaking. With the initial wave height increasing, breaking wave forces will increase, but the growth can decrease as the slope angle and permeability increase. For inclined piles around the wave breaking point, the maximum breaking wave force usually occurs with an inclination angle of α = −22.5° or 0°.


2021 ◽  
Vol 9 (3) ◽  
pp. 264
Author(s):  
Shanti Bhushan ◽  
Oumnia El Fajri ◽  
Graham Hubbard ◽  
Bradley Chambers ◽  
Christopher Kees

This study evaluates the capability of Navier–Stokes solvers in predicting forward and backward plunging breaking, including assessment of the effect of grid resolution, turbulence model, and VoF, CLSVoF interface models on predictions. For this purpose, 2D simulations are performed for four test cases: dam break, solitary wave run up on a slope, flow over a submerged bump, and solitary wave over a submerged rectangular obstacle. Plunging wave breaking involves high wave crest, plunger formation, and splash up, followed by second plunger, and chaotic water motions. Coarser grids reasonably predict the wave breaking features, but finer grids are required for accurate prediction of the splash up events. However, instabilities are triggered at the air–water interface (primarily for the air flow) on very fine grids, which induces surface peel-off or kinks and roll-up of the plunger tips. Reynolds averaged Navier–Stokes (RANS) turbulence models result in high eddy-viscosity in the air–water region which decays the fluid momentum and adversely affects the predictions. Both VoF and CLSVoF methods predict the large-scale plunging breaking characteristics well; however, they vary in the prediction of the finer details. The CLSVoF solver predicts the splash-up event and secondary plunger better than the VoF solver; however, the latter predicts the plunger shape better than the former for the solitary wave run-up on a slope case.


2015 ◽  
Vol 767 ◽  
pp. 364-393 ◽  
Author(s):  
P. Lubin ◽  
S. Glockner

AbstractThe scope of this work is to present and discuss the results obtained from simulating three-dimensional plunging breaking waves by solving the Navier–Stokes equations, in air and water. Recent progress in computational capabilities has allowed us to run fine three-dimensional simulations, giving us the opportunity to study for the first time fine vortex filaments generated during the early stage of the wave breaking phenomenon. To date, no experimental observations have been made in laboratories, and these structures have only been visualised in rare documentary footage (e.g. BBC 2009 South Pacific. Available on YouTube, 7BOhDaJH0m4). These fine coherent structures are three-dimensional streamwise vortical tubes, like vortex filaments, connecting the splash-up and the main tube of air, elongated in the main flow direction. The first part of the paper is devoted to the presentation of the model and numerical methods. The air entrainment occurring when waves break is then carefully described. Thanks to the high resolution of the grid, these fine elongated structures are simulated and explained.


Author(s):  
Toshiharu Muramatsu

Thermohydraulic analyses for a fundamental water experiment simulating thermal striping phenomena at T-junction piping systems were carried out using a quasi-direct numerical simulation code DINUS-3, which is represented by instantaneous Navier-Stokes equations and deals with a modified third-order upwind scheme for convection terms. Calculated results were compared with experimental results on the flow patterns in the downstream region of the systems, the arched vortex structures under a deflecting jet condition, the generation frequency of the arched vortex, etc. in the various conditions; i.e., diameter ratio α, flow velocity ratio β and Reynolds number Re. From the comparisons, it was confirmed that (1) the DINUS-3 code is applicable to the flow pattern classifications in the downstream region of the T-junction piping systems, (2) the arched vortex characteristics with lower frequency components and their generation possibilities can be estimated numerically by the DINUS-3 code, and (3) special attentions should be paid to the arched vortex generations with lower frequency components of fluid temperature fluctuations in the design of T-junction systems from the viewpoints of the avoidances for the thermal striping.


Author(s):  
Manoj Kumar Gangadharan ◽  
Sriram Venkatachalam

Hydroelasticity is an important problem in the field of ocean engineering. It can be noted from most of the works published as well as theories proposed earlier that this particular problem was addressed based on the time independent/ frequency domain approach. In this paper, we propose a novel numerical method to address the fluid-structure interaction problem in time domain simulations. The hybrid numerical model proposed earlier for hydro-elasticity (Sriram and Ma, 2012) as well as for breaking waves (Sriram et al 2014) has been extended to study the problem of breaking wave-elastic structure interaction. The method involves strong coupling of Fully Nonlinear Potential Flow Theory (FNPT) and Navier Stokes (NS) equation using a moving overlapping zone in space and Runge kutta 2nd order with a predictor corrector scheme in time. The fluid structure interaction is achieved by a near strongly coupled partitioned procedure. The simulation was performed using Finite Element method (FEM) in the FNPT domain, Particle based method (Improved Meshless Local Petrov Galerkin based on Rankine source, IMPLG_R) in the NS domain and FEM for the structural dynamics part. The advantage of using this approach is due to high computational efficiency. The method has been applied to study the interaction between breaking waves and elastic wall.


1966 ◽  
Vol 1 (10) ◽  
pp. 21 ◽  
Author(s):  
Wm. G. Van Dorn

The shoaling enhancement of small-amplitude, dispersive wave trains traveling over uniform, impermeable slopes was observed in a specially-constructed wave channel, where the reproducible wave elevation measurement accuracy was about .0005-in. These observations substantially support the enhancement predicted from linear theory (conservation of energy flux) except in very shallow water and on very steep slopes, where accelerative effects become important. On the hypothesis that small-amplitude runup theory might be similarly valid for periodic waves of finite height, provided that the positive incident wave amplitude Is replaced by the local crest height above still water, this theory was modified to include the effect of the superelevation under a wave crest due to profile asymmetry. The modified theory is shown to agree acceptably with runup observations of larger waves previously reported - both for breaking and non-breaking waves. Because solutions to the modified theory cannot conveniently be obtained by manual calculation, a nomograph chart is included, from which runup predictions can be easily made, given only the wave height, period, and water depth a wavelength or so from shore, and the beach slope.


2019 ◽  
Vol 89 (1) ◽  
pp. 42
Author(s):  
Т.А. Лапушкина ◽  
А.В. Ерофеев ◽  
О.А. Азарова ◽  
О.В. Кравченко

AbstractThe interaction of a plane shock wave ( M = 5) with an ionized plasma region formed before the arrival of a shock wave by a low-current glow gas discharge is considered experimentally and numerically. In the experiment, schlieren images of a moving shock-wave structure resulting from the interaction and consisting of two discontinuities, convex in the direction of motion of the initial wave, are obtained. The propagation of a shock wave over the region of energetic impact is simulated on the basis of the two-dimensional Riemann problem of decay of an arbitrary discontinuity with allowance for the influence of horizontal walls. The systems of Euler and Navier–Stokes equations are solved numerically. The non-equilibrium of the processes in the gas-discharge region was simulated by an effective adiabatic index γ. Based on the calculations performed for equilibrium air (γ = 1.4) and for an ionized nonequilibrium gas medium (γ = 1.2), it is shown that the experimentally observed discontinuities can be interpreted as elements of the solution of the two-dimensional problem of decay of a discontinuity: a shock wave followed by a contact discontinuity. It is shown that a variation in γ affects the shape of the fronts and velocities of the discontinuities obtained. Good agreement is obtained between the experimental and calculated images of density and velocities of the discontinuities at a residual gas temperature in the gas discharge region of 373 K.


Author(s):  
Zhigang Tian ◽  
Marc Perlin ◽  
Wooyoung Choi

A preliminary study on the occurrence of air flow separation over mechanically generated water waves under following wind conditions is presented. Separated air flows over both non-breaking and breaking waves are observed in the flow visualization. A first attempt to identify an air flow separation criterion based on both wind speed and wave steepness is made. It was believed that, in the case of water waves propagating in the following wind condition, air flow separation will occur only in the presence of breaking waves. However, some laboratory experiments and field measurements suggested the occurrence of air flow separation over nonbreaking waves. Therefore, we conducted lab experiments to observe the air flow over mechanically generated waves. In the experiments, the air is seeded with water droplets generated with a high-pressure spray gun and is illuminated with a thin laser light sheet. A high-speed imaging system is used to record and observe the air flow over the mechanically generated wave waves. Our observations show that the separation of air flow occurs above both breaking and non-breaking wave crests, implying that wave breaking is sufficient, but not necessary for air flow separation. In addition, as compared to the separation over breaking waves, a higher wind speed is necessary for the separation over non-breaking ones, indicating that a robust air flow separation criterion likely depends on both the wave crest geometry and the wind speed above the crest. Our preliminary results support, to a certain degree, such a criterion. To the best of our knowledge, this criterion has not been reported previously in laboratory studies.


Sign in / Sign up

Export Citation Format

Share Document