scholarly journals UNDISTORTED FROUDE MODEL FOR SURF ZONE SEDIMENT TRANSPORT

1986 ◽  
Vol 1 (20) ◽  
pp. 95 ◽  
Author(s):  
D.L. Kriebel ◽  
W.R. Dally ◽  
R.G. Dean

Small scale movable bed wave tank experiments were carried out according to undistorted Froude model laws with the sediment fall time, H/wT, as the governing parameter for scaling the model sediment. Four questions addressed in this study included: (a) the ability to reproduce larger scale model results for both erosional and accretive conditions, (b) the effects of more realistic concave upward initial beach profiles instead of the more usual planar initial slopes, (c) the criterion for onshore-offshore sediment transport, and (d) the capability of the model to simulate post-storm recovery. Based on a comparison with large scale results of Saville (1957), it was found that the model provided good agreement for erosive conditions. For accretive conditions, the results were less conclusive although the general patterns of profile change were similar. The final beach profiles resulting from concave upward initial profiles were found to be substantially different from those for an initially planar profile. It appears that the initially planar profile unrealistically affects the breaker type and results in a more pronounced longshore bar and offshore slopes that are steeper than found in nature. Tests conducted to evaluate the criterion separating onshore-offshore transport suggested a higher value of the fall time parameter, H/wT, than was originally proposed by Dean (1973); this is interpreted to be due to scale effects in most of the model data used in the original development. Tests to simulate post-storm recovery were affected by the presence of "reflection bars" associated with a partial standing wave system. The reflection bars appear to strongly affect the sediment transport limiting the post-storm profile recovery. The most effective recovery was induced by continually changing wave conditions to maintain the wave breakpoint slightly landward of the bar crest.


1974 ◽  
Vol 1 (14) ◽  
pp. 51 ◽  
Author(s):  
D.H. Swart

The investigation reported herein covers two aspects of the schematization of coastal processes on sandy beaches in a direction perpendicular to the coastline, viz.: (1) the prediction of equilibrium beach profiles and (2) the corresponding offshore sediment transport due to wave action. A physically-based schematic model of the onshore-offshore profile development was tested on available small-scale and full-scale model tests and physically-based empirical relationships were derived to enable the application of the model to both small-scale and prototype conditions.



2021 ◽  
Author(s):  
Xingyu Zhang ◽  
◽  
Matteo Ciantia ◽  
Jonathan Knappett ◽  
Anthony Leung ◽  
...  

When testing an 1:N geotechnical structure in the centrifuge, it is desirable to choose a large scale factor (N) that can fit the small-scale model in a model container and avoid unwanted boundary effects, however, this in turn may cause scale effects when the structure is overscaled. This is more significant when it comes to small-scale modelling of sinker root-soil interaction, where root-particle size ratio is much lower. In this study the Distinct Element Method (DEM) is used to investigate this problem. The sinker root of a model root system under axial loading was analysed, with both upward and downward behaviour compared with the Finite Element Method (FEM), where the soil is modelled as a continuum in which case particle-size effects are not taken into consideration. Based on the scaling law, with the same prototype scale and particle size distribution, different scale factors/g-levels were applied to quantify effects of the ratio of root diameter (𝑑𝑟) to mean particle size (𝐷50) on the root rootsoil interaction.



Author(s):  
Maximilian Streicher ◽  
Andreas Kortenhaus ◽  
Corrado Altomare ◽  
Steven Hughes ◽  
Krasimir Marinov ◽  
...  

Abstract Overtopping bore impact forces on a dike mounted vertical wall were measured in similar large-scale (Froude length scale factor 1-to-4.3) and small-scale (Froude length scale factor 1-to-25) models. The differences due to scale effects were studied, by comparing the up-scaled force measurements from both models in prototype. It was noted that if a minimum layer thickness, velocity of the overtopping flow and water depth at the dike toe were maintained in the small-scale model, the resulting differences in impact force due to scale effects are within the range of differences due to non-repeatability and model effects.



Author(s):  
Rajendran Ravindar ◽  
V Sriram ◽  
Stefan Schimmels ◽  
Dimitris Stagonas

Two sets of experiments on the vertical wall attached with recurve parapets performed at 1:1 and 1:8 scale are compared to study the influence of scale, model and laboratory effects. The small-scale (1:8) experiment scaled to large-scale (1:1) using Froude scaling, and Cuomo et al. (2010) method are compared. Comparing both the methods for scaling impact pressure, Cuomo et al. (2010) predicts well in the impact zone, whereas Froude scaling is better in the up-rushing zone. In estimating integrated impact force, Froude scaling method over-estimates compared to Cuomo et al. (2010). Overall, Cuomo et al. (2010) work better for scaling up impact pressure and forces compared to Froude scaling method. These preliminary observations are based on one type of recurved parapets only.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/w9WipBjMWzw



2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.



2015 ◽  
Vol 2 (2) ◽  
pp. 513-536 ◽  
Author(s):  
I. Grooms ◽  
Y. Lee

Abstract. Superparameterization (SP) is a multiscale computational approach wherein a large scale atmosphere or ocean model is coupled to an array of simulations of small scale dynamics on periodic domains embedded into the computational grid of the large scale model. SP has been successfully developed in global atmosphere and climate models, and is a promising approach for new applications. The authors develop a 3D-Var variational data assimilation framework for use with SP; the relatively low cost and simplicity of 3D-Var in comparison with ensemble approaches makes it a natural fit for relatively expensive multiscale SP models. To demonstrate the assimilation framework in a simple model, the authors develop a new system of ordinary differential equations similar to the two-scale Lorenz-'96 model. The system has one set of variables denoted {Yi}, with large and small scale parts, and the SP approximation to the system is straightforward. With the new assimilation framework the SP model approximates the large scale dynamics of the true system accurately.



Author(s):  
Hiroaki Takegami ◽  
Atsuhiko Terada ◽  
Kaoru Onuki ◽  
Ryutaro Hino

The Japan Atomic Energy Agency has been conducting R&D on thermochemical water-splitting Iodine-Sulfur (IS) process for hydrogen production to meet massive demand in the future hydrogen economy. A concept of sulfuric acid decomposer was developed featuring a heat exchanger block made of SiC. Recent activity has focused on the reliability assessment of SiC block. Although knowing the strength of SiC block is important for the reliability assessment, it is difficult to evaluate a large-scale ceramics structure without destructive test. In this study, a novel approach for strength estimation of SiC structure was proposed. Since accurate strength estimation of individual ceramics structure is difficult, a prediction method of minimum strength in the structure of the same design was proposed based on effective volume theory and optimized Weibull modulus. Optimum value of the Weibull modulus was determined for estimating the lowest strength. The strength estimation line was developed by using the determined modulus. The validity of the line was verified by destructive test of SiC block model, which is small-scale model of the SiC block. The fracture strength of small-scale model satisfied the predicted strength.



2006 ◽  
Vol 41 (1) ◽  
pp. 24-36 ◽  
Author(s):  
Karl-Erich Lindenschmidt ◽  
René Wodrich ◽  
Cornelia Hesse

Abstract A hypothesis stating that more complex descriptions of processes in models simulate reality better (less error) but with more unreliable predictability (more sensitivity) is tested using a river water quality model. This hypothesis was extended stating that applying the model on a domain of smaller scale requires greater complexity to capture the same accuracy as in large-scale model applications which, however, leads to increased model sensitivity. The sediment and pollutant transport model TOXI, a module in the WASP5 package, was applied to two case studies of different scale: a 90-km course of the 5th order (sensu Strahler 1952) lower Saale river, Germany (large scale), and the lock-and-weir system at Calbe (small scale) situated on the same river course. A sensitivity analysis of several parameters relating to the physical and chemical transport processes of suspended solids, chloride, arsenic, iron and zinc shows that the coefficient, which partitions the total heavy metal mass into its dissolved and sorbed fraction, is a very sensitive parameter. Hence, the complexity of the sorptive process was varied to test the hypotheses.





2008 ◽  
Vol 78 (3) ◽  
pp. 468-480 ◽  
Author(s):  
Bas W. Borsje ◽  
Mindert B. de Vries ◽  
Suzanne J.M.H. Hulscher ◽  
G.J. de Boer


Sign in / Sign up

Export Citation Format

Share Document