scholarly journals HYDRODYNAMIC PERFORMANCE OF A FREE SURFACE SEMICIRCULAR PERFORATED BREAKWATER

2011 ◽  
Vol 1 (32) ◽  
pp. 20 ◽  
Author(s):  
Hee Min Teh ◽  
Vengatesan Venugopal ◽  
Tom Bruce

The increasing importance of the sustainability challenge in coastal engineering has led to the development of free surface breakwaters of various configurations. In this study, the hydrodynamic characteristics of a perforated semicircular free surface breakwater (SCB) are investigated for irregular wave conditions. The hydrodynamic performance of the breakwater is evaluated in the form of transmission, reflection and energy dissipation coefficients, which are then presented as a function of the relative submergence depth (D/d) and the relative breakwater width (B/Lp), where D = the depth of immersion, d = the water depth, B = the breakwater width and Lp = the wavelength corresponding to the peak wave period. It is found that the wave attenuation ability of the SCB model improves with the increase of D/d and B/Lp. The SCB performs better as an energy dissipater than as a wave reflector. Based on the analysis of measured data, some empirical equations are proposed to predict the performance of the breakwater under varying submergence depths. The behaviour of wave transformation around and within the breakwater’s chamber is discussed. Also, the measured horizontal wave forces acting on the SCB are reported.

Author(s):  
Hee Min Teh ◽  
Vengatesan Venugopal ◽  
Tom Bruce

In the present study, the hydrodynamic performance of a semicircular free surface breakwater (SCB) has been investigated through a systematic experimental programme. Three semicircular breakwater models were tested: one with impermeable front and rear walls; a second with perforated front wall and impermeable rear wall; and a third with perforated front and rear walls. The models were tested for three submergence depths with reference to the still water level in a wave flume under irregular seas with different significant wave heights and peak periods. The performance of the breakwaters was evaluated in the form of coefficients of transmission (CT), reflection (CR) and energy dissipation (CL). The measured wave modification in front of the structure and in the breakwater’s chamber were quantified and presented in the form of a ratio relative to the incident wave height, respectively. Also, the measured horizontal wave forces acting on the SCB were analysed and reported in a dimensionless form. Empirical equations were then developed using nonlinear multiple regression models to estimate the hydrodynamic characteristics of the SCB models.


2011 ◽  
Vol 90-93 ◽  
pp. 2782-2789
Author(s):  
Gang Jun Zhai ◽  
Zhe Ma ◽  
Hee Min Teh ◽  
Vengatesan Venugopal

The increasing importance of the sustainability challenge in o engineering has led to the development of free surface ocean structure of various configurations. In this study, the hydrodynamic characteristics of a perforated free surface, semicircular breakwater (SCB) are investigated for irregular wave conditions under the different water depths. The performance of the breakwaters was evaluated in the form of coefficients of transmission (CT), reflection (CR) and energy dissipation (CL). The measured wave modification in front of the structure and in the structure’s chamber were quantified and presented in the form of a ratio relative to the incident wave height, respectively, which are then presented as a function of the relative immersion depth (D/d) and the relative structure width (B/Lp), where D = the depth of immersion, d = the water depth, B = the structure width and Lp = the wavelength corresponding to the peak wave period. The measured wave modification in front of the structure and in the breakwater’s chamber were quantified and presented in the form of a ratio relative to the incident wave height, respectively. It is found that the wave attenuation ability of the SCB model improves with the increase of D/d and B/Lp. The SCB performs better as an energy dissipater than as a wave reflector.


Author(s):  
Hee Min Teh ◽  
Vengatesan Venugopal

A free surface semicircular breakwater (SCB) with rectangular perforations has been developed to serve as a wave defence structure. Hydrodynamic performance of the breakwaters of various perforations has been thoroughly investigated through wave measurements in a wave flume under random waves. The SCBs were experimentally confirmed to be good anti-reflection wave structures; however, the level of wave transmission at the leeside of the SCBs was rather high particularly when immersed in limited depth and confronted by waves of longer period. This study aims at optimizing the hydraulic characteristics of the SCB by extending its draft by means of wave screens. Three test configurations have been identified in this study, namely (1) the SCB with front screen, (2) the SCB with rear screen, and (3) the SCB with double screens. For each wave screen, three porosities (i.e. 25, 40 and 50%) have been considered in the experiments. The models of shallow immersion depths have been tested in random waves of different characteristics in a wave flume. Wave transformation at different locations upstream and downstream of the test models has been recorded by wave probes. The hydraulic performance of the breakwater are quantified by the coefficients of wave transmission, reflection and energy dissipation, and the wave climate in the vicinity of the breakwater are presented in the form of a ratio relative to the incident wave height. The optimum design of SCB supplemented by truncated wave screen(s) is proposed at the end of the study.


Author(s):  
Ankit Aggarwal ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Hans Bihs ◽  
Øivind Asgeir Arnsten

In the present study, the irregular wave forces on a fully submerged circular cylinder are investigated using the open-source computational fluid dynamics (CFD) model REEF3D. A complete three dimensional representation of the ocean waves requires the consideration of the sea surface as an irregular wave train with the random characteristics. The numerical model uses the incompressible Reynolds-averaged Navier-Stokes (RANS) equations together with the continuity equation to solve the fluid flow problem. Turbulence modeling is carried out using the two equation k-ω model. Spatial discretization is done using an uniform Cartesian grid. The level set method is used for computing the free surface. For time discretization, third-order total variation diminishing (TVD) Runge Kutta scheme is used. Ghost cell boundary method is used for implementing the complex geometries in the numerical model. MPI is used for the exchange of the value of a ghost cell. Relaxation method is used for the wave generation. The numerical model is validated for the irregular waves for a wave tank without any structure. Further, the numerical model is validated by comparing the numerical results with the experimental data for a fully submerged circular cylinder under regular waves and irregular waves. The numerical results are in a good agreement with the experimental data for the regular and irregular wave forces. The JONSWAP spectrum is used for the wave generation. The free surface features and kinematics around the cylinder is also presented and discussed.


2021 ◽  
Author(s):  
Peihong Zhao ◽  
Dapeng Sun ◽  
Hao Wu

A Jarlan-type perforated caisson (JTPC) was an important form of structure in offshore and coastal engineering and its wave attenuation performance was greatly affected by μ (the perforated rate). In the present research, a numerical model based on VARANS equations was tested by comparing the simulation results with physical experiments and then adopted to study the effect of a larger range of μ on wave attenuation performance which included both the horizontal wave forces and the reflection coefficients. Conclusions were drawn that the total horizontal wave force and the reflection coefficient both tended to decrease and then increase with increasing μ; when the reflection coefficient reached its minimum value as about μ=0.2, the wave force at the seaward side of the perforated front wall tended to be equal to that at the solid rear wall; the total horizontal wave force reached its minimum value as about μ=0.3.


2022 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Kai Dong ◽  
Xianzhou Wang ◽  
Donglei Zhang ◽  
Liwei Liu ◽  
Dakui Feng

The simulations of submarine sailing near the free surface with long-crested waves have been conducted in this study using an in-house viscous URANS solver with an overset grid approach. First, the verification and validation procedures were performed to evaluate the reliability, with the results showing that the generation of irregular waves is adequately accurate and the results of total resistance are in good agreement with EFD. Next, three different submerged depths ranging from 1.1D to 3.3D were selected and the corresponding conditions of submarine sailing near calm water were simulated, the results of which were then compared with each other to investigate the influence of irregular waves and submerged depths. The simulations of the model near calm water at different submerged depths demonstrated that the free surface will cause increasing resistance, lift, and bow-up moments of the model, and this influence decreases dramatically with greater submerged depths. The results of the irregular wave simulations showed that irregular waves cause considerable fluctuations of hydrodynamic force and moments, and that this influence remains even at a deeper submerged depth, which can complicate the control strategies of the submarine. The response spectrum of hydrodynamic forces and moments showed slight amplitudes in the high-frequency region, and the model showed less sensitivity to high-frequency excitations.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Peihong Zhao ◽  
Dapeng Sun ◽  
Hao Wu

A Jarlan-type perforated caisson consisted of a perforated front wall, a solid rear wall, and a wave-absorbing chamber between them. The wave-absorbing chamber was the main feature of the perforated caisson, and its width had a great effect on wave attenuation performance. In this study, a larger range of the wave-absorbing chamber width was observed in model experiments to investigate the effect on wave attenuation performance including the reflection coefficients and the horizontal wave forces of a perforated caisson sitting on a rubble-mound foundation. A resistance-type porosity numerical model based on the volume-averaged Reynolds-averaged Navier–Stokes (VARANS) equations was validated by comparing the present results with those of previously reported and present experiments. The validated numerical model was then used for extended research. It was found that the reflection coefficients, the total horizontal wave force, and its components all tended to oscillate in a decrease ⟶ increase ⟶ decrease manner with increasing the wave-absorbing chamber width. The reflection coefficients and wave forces acting on both sides of the perforated front wall were found to be synchronized regardless of perforation ratio or the rubble-mound foundation height.


2021 ◽  
Vol 9 (8) ◽  
pp. 812
Author(s):  
Lin Hong ◽  
Renjie Fang ◽  
Xiaotian Cai ◽  
Xin Wang

This paper conducts a numerical investigation on the hydrodynamic performance of a portable autonomous underwater vehicle (AUV). The portable AUV is designed to cruise and perform some tasks autonomously in the underwater world. However, its dynamic performance is strongly affected by hydrodynamic effects. Therefore, it is crucial to investigate the hydrodynamic performance of the portable AUV for its accurate dynamic modeling and control. In this work, based on the designed portable AUV, a comprehensive hydrodynamic performance investigation was conducted by adopting the computational fluid dynamics (CFD) method. Firstly, the mechanical structure of the portable AUV was briefly introduced, and the dynamic model of the AUV, including the hydrodynamic term, was established. Then, the unknown hydrodynamic coefficients in the dynamic model were estimated through the towing experiment and the plane-motion-mechanism (PMM) experiment simulation. In addition, considering that the portable AUV was affected by wave forces when cruising near the water surface, the influence of surface waves on the hydrodynamic performance of the AUV under different wave conditions and submerged depths was analyzed. Finally, the effectiveness of our method was verified by experiments on the standard models, and a physical experiment platform was built in this work to facilitate hydrodynamic performance investigations of some portable small-size AUVs.


Author(s):  
T J Jemi Jeya ◽  
V Sriram ◽  
V Sundar

This paper presents the results from a comprehensive experimental study on the Quadrant Face Pile Supported Breakwater (QPSB) in two different water depths exposed to three different oblique wave attacks. The results are compared with that for a Vertical face Pile Supported Breakwater (VPSB) for identical test conditions. The paper compares the reflection coefficient, transmission coefficient, energy loss coefficient, non-dimensional pressure, and non-dimensional run-up as a function of the relative water depth and scattering parameter. The results obtained for QPSB are validated with existing results. The salient observations show that QPSB experiences better hydrodynamic performance characteristics than the VPSB under oblique waves.


Sign in / Sign up

Export Citation Format

Share Document