scholarly journals OPTIMIZING METHODS TO MEASURE HYDRODYNAMICS IN COASTAL WETLANDS: EVALUATING THE USE AND POSITIONING OF ADV, ADCP AND HR-ADCP

2011 ◽  
Vol 1 (32) ◽  
pp. 51 ◽  
Author(s):  
Erik Horstman ◽  
Thorsten Balke ◽  
Tjeerd Bouma ◽  
Marjolein Dohmen-Janssen ◽  
Suzanne Hulscher

Hydrodynamic impacts of vegetation in the intertidal zone are highly important to coastal protection. However, most studies on hydrodynamic impacts of vegetation in the intertidal zone are carried out in flumes. This results in a lack of field data for validating models that describe short-term hydrodynamic impacts of vegetation. The current research focuses on field measurements of flow patterns and waves in vegetated intertidal areas. Ample measurement devices are available to measure hydrodynamic processes in the field. Examples are: acoustic Doppler current profilers (ADCP), high resolution acoustic Doppler current profilers (HR-ADCP) and acoustic Doppler velocity meters (ADV). This study focuses on the differences in the performance of these devices, to determine which of them can be best deployed in a future fieldwork campaign in mangroves. Major points of attention in this comparison are the accuracy of the data and the potential disturbance of the measurements by the presence of vegetation. It is concluded that ADV’s perform very well in vegetated intertidal areas, while (HR-)ADCP’s show difficulties when deployed upward looking. Furthermore, ADV’s are preferred over (HR-)ADCP’s due to their ability of combining high frequent wave and current measurements and their convenient deployment.

1998 ◽  
Vol 37 (1) ◽  
pp. 155-162
Author(s):  
Flemming Schlütter ◽  
Kjeld Schaarup-Jensen

Increased knowledge of the processes which govern the transport of solids in sewers is necessary in order to develop more reliable and applicable sediment transport models for sewer systems. Proper validation of these are essential. For that purpose thorough field measurements are imperative. This paper renders initial results obtained in an ongoing case study of a Danish combined sewer system in Frejlev, a small town southwest of Aalborg, Denmark. Field data are presented concerning estimation of the sediment transport during dry weather. Finally, considerations on how to approach numerical modelling is made based on numerical simulations using MOUSE TRAP (DHI 1993).


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 902
Author(s):  
Zhi Li ◽  
Ben R. Hodges

A new high-performance numerical model (Frehg) is developed to simulate water flow in shallow coastal wetlands. Frehg solves the 2D depth-integrated, hydrostatic, Navier–Stokes equations (i.e., shallow-water equations) in the surface domain and the 3D variably-saturated Richards equation in the subsurface domain. The two domains are asynchronously coupled to model surface-subsurface exchange. The Frehg model is applied to evaluate model sensitivity to a variety of simplifications that are commonly adopted for shallow wetland models, especially the use of the diffusive wave approximation in place of the traditional Saint-Venant equations for surface flow. The results suggest that a dynamic model for momentum is preferred over diffusive wave model for shallow coastal wetlands and marshes because the latter fails to capture flow unsteadiness. Under the combined effects of evaporation and wetting/drying, using diffusive wave model leads to discrepancies in modeled surface-subsurface exchange flux in the intertidal zone where strong exchange processes occur. It indicates shallow wetland models should be built with (i) dynamic surface flow equations that capture the timing of inundation, (ii) complex topographic features that render accurate spatial extent of inundation, and (iii) variably-saturated subsurface flow solver that is capable of modeling moisture change in the subsurface due to evaporation and infiltration.


1984 ◽  
Vol 32 (5) ◽  
pp. 495 ◽  
Author(s):  
BA Myers ◽  
TF Neales

Field observations of some parameters of the water relations of the two eucalypt species E. behriana and E. microcarpa in dry sclerophyll, mallee and woodland vegetation were made at three sites from 1980 to 1983. The mean ( n = 519) water potential measured at dawn (Ψdawn) was -3.07± 0.01 MPa and fluctuated seasonally with rainfall intensity over the range -2.0 ± 0, 1 to -4.4 ± 0.1 MPa ( n = 30). Both species behaved similarly and some osmotic adjustment took place. Mean leaf conductance (gs) varied between 0.151 ± 0.006 and 0.003 ± 0.001 mol m-2 s-1 . Maximum daily values of gs were linearly related to Ψdawn as it fluctuated seasonally. The slope of this linear regression was not significantly different from that relating these values of gs and Ψ, when both were measured concurrently. There were thus no indications of a distinction between the responses of gs to long- and short-term fluctuations of Ψ or of a threshold-type response of gs to Ψ. Field measurements indicated that gs was decreased at high values of vapour pressure difference (Δe). In laboratory studies with seedlings of the two species gs decreased from 0.5 to 0.1 mol m-2 s-I as Δe increased from 0.5 to 3.0 kPa. Leaf and canopy conductance were the predominant plant determinants of transpiration rate (Er) in this type of vegetation which has the capacity to restrict Et via the effect of water potential (Ψ) on gs and also by the response of gs to Δe. Some of the water relations parameters of E. behriana indicated that this species was better able to withstand drought than was E microcarpa.


2017 ◽  
Vol 2638 (1) ◽  
pp. 113-121
Author(s):  
Stephen T. Benedict ◽  
Thomas P. Knight

The Hydraulic Engineering Circular 18 (HEC-18) pier scour prediction equation is the most widely used pier scour prediction equation in the United States, if not the world, and understanding the equation’s performance is of interest to the bridge engineering community. Previous evaluations of the equation’s performance were limited to smaller sets of laboratory and field data. In 2014, the U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, published a U.S. Geological Survey pier scour database, consisting of 569 laboratory and 1,858 field measurements of pier scour. This extensive database is a valuable resource for evaluating the HEC-18 pier scour equation, which is the primary focus of the investigation presented in this paper. Although comparing predicted and measured values is a common method for evaluating the performance of a prediction equation, the present investigation used a different approach and evaluated the HEC-18 equation by comparing selected data from the USGS database with the dimensionless relationship used to develop the original equation. This alternative approach highlighted some of the strengths and weaknesses of the equation, which are not as evident in the more common approach of comparing predicted and measured values. The findings of the investigation are presented in this paper.


1995 ◽  
Vol 32 (3) ◽  
pp. 545-552 ◽  
Author(s):  
B. Wang ◽  
Hugh M. French

Field measurements of frozen soil creep in the upper 3.0 m of permafrost indicate that creep occurs in both winter and summer. Between 1992 and 1993, the mean rate of creep ranged from 0.44 cm at 1.6 m depth to 0.16 cm at 2.8 m depth but there was extreme variability. Creep parameters n and A, as defined by the power flow law, were calculated from field data. Parameter n ranged between 1.96 and 2.29 and increased with depth, while A decreased with depth. Comparisons of creep rates for different permafrost environments suggest that ground temperature largely controls the magnitude of permafrost creep. Key words : permafrost, creep parameters, Tibet Plateau.


2021 ◽  
Author(s):  
Sofia Kroisz ◽  
Lukas Drescher ◽  
Manuela Temmer ◽  
Sandro Krauss ◽  
Barbara Süsser-Rechberger ◽  
...  

<p>Through advanced statistical investigation and evaluation of solar wind plasma and magnetic field data, we investigate the statistical relation between the magnetic field B<sub>z</sub> component, measured at L1, and Earth’s thermospheric neutral density. We will present preliminary results of the time series analyzes using in-situ plasma and magnetic field measurements from different spacecraft in near Earth space (e.g., ACE, Wind, DSCOVR) and relate those to derived thermospheric densities from various satellites (e.g., GRACE, CHAMP). The long and short term variations and dependencies in the solar wind data are related to variations in the neutral density of the thermosphere and geomagnetic indices. Special focus is put on the specific signatures that stem from coronal mass ejections and stream or corotating interaction regions.  The results are used to develop a novel short-term forecasting model called SODA (Satellite Orbit DecAy). This is a joint study between TU Graz and University of Graz funded by the FFG Austria (project “SWEETS”).</p>


Author(s):  
Zhi-Cheng Huang ◽  
Wen-Yang Hsu ◽  
Jay Yang

Understanding the hydrodynamics is important for biological, ecological, and biogeochemical processes in coral reef systems. The near-bed flow motion affects the benthic organism distributions, morphological evolution, larvae settlement, and nutrient uptake. The near-bed flow structures have been characterized as planar boundary-layer flows when the bottom roughness scale created by benthic organisms is much smaller than the water depth. On the other hand, when the bottom roughness scale becomes much larger, the resistance drag forces caused by these canopy elements should be considered (Rosman and Hench, 2011). The form drag of the multiple coral colonies generates turbulent wakes, enhances turbulent mixing, and changes the flow structure (Huang, 2015). Many laboratory and modeling studies have reported the drag parameterization and the flow structure for unidirectional flows through submerged canopy or vegetation (e.g., Finnigan, 2000; among many others). However, the vertical flow structures of the canopy layer caused by coral colonies (bommies) are rarely reported in fields. Here we present field measurements of flow structure over coral colonies using acoustic Doppler velocimetry (ADV) and pulse-coherent Doppler velocity profiler (PCADP) techniques. The measured current profiles and turbulence are used to study the flow dynamics in the canopy-layer created by coral colonies.


2020 ◽  
Vol 224 (1) ◽  
pp. 669-681
Author(s):  
Sihong Wu ◽  
Qinghua Huang ◽  
Li Zhao

SUMMARY Late-time transient electromagnetic (TEM) data contain deep subsurface information and are important for resolving deeper electrical structures. However, due to their relatively small signal amplitudes, TEM responses later in time are often dominated by ambient noises. Therefore, noise removal is critical to the application of TEM data in imaging electrical structures at depth. De-noising techniques for TEM data have been developed rapidly in recent years. Although strong efforts have been made to improving the quality of the TEM responses, it is still a challenge to effectively extract the signals due to unpredictable and irregular noises. In this study, we develop a new type of neural network architecture by combining the long short-term memory (LSTM) network with the autoencoder structure to suppress noise in TEM signals. The resulting LSTM-autoencoders yield excellent performance on synthetic data sets including horizontal components of the electric field and vertical component of the magnetic field generated by different sources such as dipole, loop and grounded line sources. The relative errors between the de-noised data sets and the corresponding noise-free transients are below 1% for most of the sampling points. Notable improvement in the resistivity structure inversion result is achieved using the TEM data de-noised by the LSTM-autoencoder in comparison with several widely-used neural networks, especially for later-arriving signals that are important for constraining deeper structures. We demonstrate the effectiveness and general applicability of the LSTM-autoencoder by de-noising experiments using synthetic 1-D and 3-D TEM signals as well as field data sets. The field data from a fixed loop survey using multiple receivers are greatly improved after de-noising by the LSTM-autoencoder, resulting in more consistent inversion models with significantly increased exploration depth. The LSTM-autoencoder is capable of enhancing the quality of the TEM signals at later times, which enables us to better resolve deeper electrical structures.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wanli Li ◽  
Mingjian Chen ◽  
Chao Zhang ◽  
Lundong Zhang ◽  
Rui Chen

A navigation grade Strapdown Inertial Navigation System (SINS) combined with a Doppler Velocity Log (DVL) is widely used for autonomous navigation of underwater vehicles. Whether the DVL is able to provide continuous velocity measurements is of crucial importance to the integrated navigation precision. Considering that the DVL may fail during the missions, a novel neural network-based SINS/DVL integrated navigation approach is proposed. The nonlinear autoregressive exogenous (NARX) neural network, which is able to provide reliable predictions, is employed. While the DVL is available, the neural network is trained by the body frame velocity and its increment from the SINS and the DVL measurements. Once the DVL fails, the well trained network is able to forecast the velocity which can be used for the subsequent navigation. From the experimental results, it is clearly shown that the neural network is able to provide reliable velocity predictions for about 200 s–300 s during DVL malfunction and hence maintain the short-term accuracy of the integrated navigation.


2005 ◽  
Vol 44 (3) ◽  
pp. 285-300 ◽  
Author(s):  
Tammy M. Weckwerth ◽  
Crystalyne R. Pettet ◽  
Frédéric Fabry ◽  
Shin Ju Park ◽  
Margaret A. LeMone ◽  
...  

Abstract This study will validate the S-band dual-polarization Doppler radar (S-Pol) radar refractivity retrieval using measurements from the International H2O Project conducted in the southern Great Plains in May–June 2002. The range of refractivity measurements during this project extended out to 40–60 km from the radar. Comparisons between the radar refractivity field and fixed and mobile mesonet refractivity values within the S-Pol refractivity domain show a strong correlation. Comparisons between the radar refractivity field and low-flying aircraft also show high correlations. Thus, the radar refractivity retrieval provides a good representation of low-level atmospheric refractivity. Numerous instruments that profile the temperature and moisture are also compared with the refractivity field. Radiosonde measurements, Atmospheric Emitted Radiance Interferometers, and a vertical-pointing Raman lidar show good agreement, especially at low levels. Under most daytime summertime conditions, radar refractivity measurements are representative of an ∼250-m-deep layer. Analyses are also performed on the utility of refractivity for short-term forecasting applications. It is found that the refractivity field may detect low-level boundaries prior to the more traditional radar reflectivity and Doppler velocity fields showing their existence. Data from two days on which convection initiated within S-Pol refractivity range suggest that the refractivity field may exhibit some potential utility in forecasting convection initiation. This study suggests that unprecedented advances in mapping near-surface water vapor and subsequent improvements in predicting convective storms could result from implementing the radar refractivity retrieval on the national network of operational radars.


Sign in / Sign up

Export Citation Format

Share Document