scholarly journals AVERAGE AND WAVE-BY-WAVE OVERTOPPING PERFORMANCE OF STEEP LOW-CRESTED STRUCTURES

Author(s):  
David Gallach-Sánchez ◽  
Peter Troch ◽  
Andreas Kortenhaus

Wave overtopping is a key process in coastal protection. The assessment of the wave overtopping rates is an important aspect in the design of coastal structures. In this paper, the focus is on steep low-crested structures, which include structures with steep slopes up to the limit case with vertical structures, with small relative freeboards up to the case with zero freeboards. This type of structures is of use for coastal protection in the case of sea level rise within climate change process and for overtopping wave energy converters. A literature review of the overtopping knowledge available for steep low-crested structures is carried out, identifying a knowledge gap. To fill this knowledge gap, 2D hydraulic model tests were performed at the wave flume of the Department of Civil Engineering at Ghent University, measuring wave conditions and the overtopping performance. Average and individual wave overtopping were analysed and compared to existing prediction formulae. Inaccuracies in the existing prediction formulae are detected and studied, and enhanced prediction formulae are presented for the average overtopping and the probability distribution of the individual overtopping volumes. The new prediction formulae improve the accuracy of wave overtopping volumes for steep low-crested structures range while maintaining the accuracy for other types of structures. The improved understanding of the overtopping behaviour allows a safer design of coastal structures.

Author(s):  
Leopoldo Franco ◽  
Yuri Pepi ◽  
Stefano de Finis ◽  
Verdiana Iorio ◽  
Giorgio Bellotti ◽  
...  

Nowadays one of the most challenging problem for engineers is to adapt existing coastal structures to climate changes. Wave overtopping is highly sensitive to the increasing extreme water depths due to higher storm surges coupled with sea level rise. One way to face these problems for rubble mound breakwaters is to add one or more layers to the existing armour. Prediction of wave overtopping of coastal structures is presently obtained from empirical formulae in EurOtop (2018). For the case of overtopping over multi-layer armour, no validated method exists, so prediction must be based upon assumptions and judgement, with related uncertainties. This study is focused on the effects of different types of armour, the number of layer and other structural characteristics on the roughness factor f. The main effects of porosity and roughness will be investigated. This paper analyzes the results of several new physical model tests of different rubble mound breakwaters reproduced at the new medium scale random wave flume of the Department of Engineering of Roma Tre University.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/8cOdqkqQ-9s


2012 ◽  
Vol 1 (33) ◽  
pp. 61
Author(s):  
Lander Victor ◽  
Peter Troch

Extensive knowledge is available on the overtopping behaviour of traditional smooth impermeable sea defence structures, such as mildly sloping dikes and vertical walls, both typically featuring a high crest freeboard to reduce wave overtopping. A particular design application emerges in the development of wave energy converters of the overtopping type, where maximisation of wave overtopping is required, i.e. smooth impermeable steep sloping structures with low crest freeboards subjected to non-breaking waves. To date, only relatively limited knowledge is available on the overtopping behaviour of those structures. In this study, the average overtopping rate obtained from new experiments has been analysed and compared with existing prediction methods. This study contributes to a better knowledge on the overtopping behaviour of the steep low-crested structures, which is positioned in between that of mildly sloping dikes and vertical walls on the one hand, and in between that of structures with zero crest freeboards and relatively large crest freeboards on the other hand. The existing prediction methods seem unable to predict the significant effects of the slope angle and small relative crest freeboards on the average overtopping rate accurately. Therefore, a new set of prediction formulae is proposed based on the new experiments combined with existing data from literature. These formulae include wave overtopping at vertical walls subjected to non-impacting waves and at structures with zero crest freeboard.


Author(s):  
Md Salauddin ◽  
John O'Sullivan ◽  
Soroush Abolfathi ◽  
Shudhi Dong ◽  
Jonathan Pearson

Maximum wave overtopping volumes on sea defences are an indicator for identifying risks to people and properties from wave hazards. The probability distribution of individual overtopping volumes can generally be described by a two-parameter Weibull distribution function (shape and scale parameters). Therefore, the reliable prediction of maximum individual wave overtopping volumes at coastal structures relies on an accurate estimation of the shape factor in the Weibull distribution. This study contributes to an improved understanding of the distribution of individual wave overtopping volumes at sloping structures by analysing the wave-by-wave overtopping volumes obtained from physical model experiments on a 1V:2H sloped impermeable structure with a permeable shingle foreshore of slope 1V:20H. Measurements of the permeable shingle foreshore were benchmarked against those from an identical experimental set-up with a smooth impermeable foreshore (1V:20H) of the same geometry. Results from both experimental set-ups were compared to commonly used empirical formulations, underpinned by the assumption that an impermeable foreshore exists in front of the sea structure. The effect on the shape factor in the Weibull distribution of incident wave steepness, relative crest freeboard, probability of overtopping waves and discharge are examined to determine the variation of individual overtopping volumes with respect to these key parameters. A key finding from the study is that no major differences in Weibull distribution shape parameter were observed for the tested impermeable and permeable sloped foreshores. Existing empirical formulae were also shown to predict reasonably well the Weibull distribution shape parameter, b, at sloping structures with both impermeable and permeable slopes.


2021 ◽  
Vol 106 ◽  
pp. 102476
Author(s):  
Ali Koosheh ◽  
Amir Etemad-Shahidi ◽  
Nick Cartwright ◽  
Rodger Tomlinson ◽  
Marcel R.A. van Gent

2018 ◽  
Vol 33 (3) ◽  
pp. 158-159 ◽  
Author(s):  
Teresa Garrett

Advancing evidence-based policy change is a leadership challenge that nurses should embrace. Key tips to ensure that evidence-based policy changes are successful at the individual, community, and population levels are offered to help nurses through the change process. The public trust in the nursing profession is a leverage point that should be used to advance the use of evidence, expedite change, and improve health for students and across communities.


Author(s):  
Jean-Baptiste Saulnier ◽  
Izan Le Crom

Located off the Guérande peninsula, SEM-REV is the French maritime facility dedicated to the testing of wave energy converters and related components. Lead by Ecole Centrale de Nantes through the LHEEA laboratory, its aim is to promote research alongside the development of new offshore technologies. To this end, the 1km2, grid-connected zone is equipped with a comprehensive instruments network sensing met-ocean processes and especially waves, with two identical directional Waverider buoys deployed on the site since 2009. For the design of moored floating structures and, a fortiori, floating marine energy converters, the knowledge of the main wave resource — for regular operation — but also extreme conditions — for moorings and device survivability — has to be as precise as possible. Also, the consideration of the multiple wave systems (swell, wind sea) making up the sea state is a key asset for the support of developers before and during the testing phase. To this end, a spectral partitioning algorithm has been implemented which enables the individual characterisation of wave systems, in particular that of their spectral peakedness which is especially addressed in this work. Peakedness has been shown to be strongly related to the groupiness of large waves and is defined here as the standard JONSWAP’s peak enhancement factor γ. Statistics related to this quantity are derived from the measurement network, with a particular focus on the extreme conditions reported on SEM-REV (Joachim storm).


1975 ◽  
Vol 2 (4) ◽  
pp. 381-391 ◽  
Author(s):  
J. W. Kamphuis

A number of lightweight coastal protection structures, built on the Lake Erie shore are discussed in this paper. There were two constraints on the design; limited funds and a very precarious downdrift beach. Thus the structures were inexpensive and the protection was low-key to prevent damage downdrift. In 1972–1974 these structures were subjected to a combination of large waves and high water levels and thus they were tested well beyond their design limits.The paper discusses the structures, their performance under normal conditions, and their performance during and after the abnormally high water levels. It is found that inexpensive, low-key structures are sufficiently strong to survive normal conditions, but fail by overtopping and flanking under conditions beyond their low design limits.


1988 ◽  
Vol 1 (21) ◽  
pp. 23
Author(s):  
Toru Sawaragi ◽  
Ichiro Deguchi ◽  
San-Kil Park

A wave overtopping rate from a sea dike of various toe depths is formulated based on a weir model in an unidirectional flow. To evaluated the wave overtopping rate from a seadike on an artificial reef by the weir model, a numerical procedure for predicting wave transformations including the effect of forced wave breaking on the reef is constructed. After confirming the applicability of the model through experiments with regular and irregular waves, the effect of artificial reef on wave overtopping is discussed. So-called individual wave analysis method is shown to he applicable to the wave overtopping caused by irregular waves.


1984 ◽  
Vol 1 (19) ◽  
pp. 22 ◽  
Author(s):  
Scott L. Douglass

Methods for estimating wave overtopping of coastal structures are reviewed and compared with the very limited available data and with each other. The different methods yield results which can vary more than an order-of-magnitude. For vertical seawalls, the U. S. Army Engineer Shore Protection Manual method estimates more overtopping than Goda's method except in very shallow water. For sloped structures, the Shore Protection Manual method usually estimates less overtopping than Battjes' method and Owen's method. However, data for adequately evaluating how well these methods predict overtopping has not been published.


Sign in / Sign up

Export Citation Format

Share Document