scholarly journals ANALYSIS OF A SCHOOL BUILDING AGAINST TYPHOON HAIYAN STORM SURGE FORCES

Author(s):  
Justin Joseph Valdez ◽  
Tomoya Shibayama

In 2013 Typhoon Haiyan dealt strong winds and storm surges to Tacloban City, Philippines. After that, the standard public school buildings were designed using the load provisions of the updated 2015 National Structural Code of the Philippines. However, it is important to analyze if the school buildings can resist failure against another Haiyan storm surge event. Haiyan was simulated using the the Weather Research and Forecasting (WRF) Model, and the storm surge was simulated using the Finite Volume Community Ocean Model (FVCOM). The wind and flood loads were then calculated and applied on a two-story school building model in STAAD.Pro, and the maximum shear forces and bending moments in the 300 beams and columns were compared to its capacity.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/P3E1_aizbnE

2015 ◽  
Vol 3 (2) ◽  
pp. 919-939 ◽  
Author(s):  
J. P. Lapidez ◽  
J. Tablazon ◽  
L. Dasallas ◽  
L. A. Gonzalo ◽  
K. M. Cabacaba ◽  
...  

Abstract. Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH), the flagship disaster mitigation program of the Department of Science and Technology (DOST), Government of the Philippines, to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948–2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.


2015 ◽  
Vol 15 (7) ◽  
pp. 1473-1481 ◽  
Author(s):  
J. P. Lapidez ◽  
J. Tablazon ◽  
L. Dasallas ◽  
L. A. Gonzalo ◽  
K. M. Cabacaba ◽  
...  

Abstract. Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH) which is the flagship disaster mitigation program of the Department of Science and Technology (DOST) of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948–2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.


2017 ◽  
Author(s):  
Sally L. Lavender ◽  
Ron K. Hoeke ◽  
Deborah J. Abbs

Abstract. Tropical cyclones (TCs) cause widespread damage associated with strong winds, heavy rainfall and storm surge. Understanding changes in these characteristics associated with potential future climate scenario sea surface temperatures (SSTs), as well as variations with climate modes, such as the El Niño/Southern Oscillation, is important for mitigating impacts. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1–2 °C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple sensitivity analysis is performed to gain insight into the influence of SST on the track, size, intensity and potential destructiveness of TC Yasi, including rainfall and storm surge. In order to assess the ability of a high resolution regional model at simulating TC Yasi, the Weather Research and Forecasting (WRF) model is forced in a control run using atmospheric reanalyses and observed SST data over the period 31st January to 4th February 2013. The model is able to closely simulate the observed track, with the modelled landfall occurring within 50 km and 3-hours of the observed event. Additional simulations are carried out with uniform SST anomalies of between −4 °C and 4 °C applied to the observed SST's over the whole region in 1 degree increments, forming a set of nine simulations. The resulting surface winds and pressure were then used to force a barotropic storm surge model. An increase in SST results in an increase in intensity, precipitation and destructiveness of the storm, however there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SST lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 °C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temps. The largest change in storm surge occurs when a negative SST anomaly is applied with a decrease in storm surge height of over 3 m when the SST is reduced by 2 °C. In summary, increases in SST lead to an increase in the potential destructiveness of TCs, although this relationship is not linear.


2021 ◽  
Vol 9 (5) ◽  
pp. 458
Author(s):  
Dongdong Chu ◽  
Haibo Niu ◽  
Wenli Qiao ◽  
Xiaohui Jiao ◽  
Xilin Zhang ◽  
...  

In this paper, a three-dimensional storm surge model was developed based on the Finite Volume Community Ocean Model (FVCOM) by the hindcasts of four typhoon-induced storm surges (Chan-hom, Mireille, Herb, and Winnie). After model validation, a series of sensitivity experiments were conducted to explore the effects of key parameters in the wind and pressure field (forward speed, radius of maximum wind (RMW), inflow angle, and central pressure), typhoon path, wind intensity, and topography on the storm surge and surge asymmetry between sea level rise (positive surge) and fall (negative surge) along the southeastern coast of China (SCC). The model results show that lower central pressure and larger RMW could lead to stronger surge asymmetry. A larger inflow angle results in a stronger surge asymmetry. In addition, the path of Chan-hom is the most dangerous path type for the Zhoushan Archipelago area, and that of Winnie follows next. The model results also indicate that the non-linear interaction between wind field and pressure field tends to weaken the peak surge elevation. The effect of topography on storm surges indicates that the peak surge elevation and its occurrence time, as well as the surge asymmetry, increase with a decreasing slope along the SCC.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yumei Ding ◽  
Lei Ding

A hindcast of typical extratropical storm surge occurring in the Bohai Sea in October 2003 is performed using a three-dimensional (3D) Finite Volume Coastal Ocean Model (FVCOM). The storm surge model is forced by 10 m winds obtained from the Weather Research Forecasting (WRF) model simulation. It is shown that the simulated storm surge and tides agree well with the observations. The nonlinear interaction between the surge and astronomical tides, the spatial distribution of the maximum surge level, and the hydrodynamic response to the storm surge are studied. The storm surge is the interaction of the surge and the astronomical tides. The currents change rapidly during the storm surge and turn to be the unidirectional at some places where the tidal currents are usually rectilinear. The results show that the local surge current velocity in each depth, with a magnitude of the same order as the astronomic tidal currents, increases or decreases rapidly depending on the relationship between the winds and current directions. Furthermore, the current pattern gets more complicated under the influence of the direction of the winds, which might affect sand movement in the coastal water of the Bohai Sea.


2016 ◽  
Vol 97 (1) ◽  
pp. 31-48 ◽  
Author(s):  
Janneli Lea A. Soria ◽  
Adam D. Switzer ◽  
Cesar L. Villanoy ◽  
Hermann M. Fritz ◽  
Princess Hope T. Bilgera ◽  
...  

Abstract On 8 November 2013, Typhoon Haiyan impacted the Philippines with estimated winds of approximately 314 km h-1 and an associated 5–7-m-high storm surge that struck Tacloban City and the surrounding coast of the shallow, funnel-shaped San Pedro Bay. Typhoon Haiyan killed more than 6,000 people, superseding Tropical Storm Thelma of November 1991 as the deadliest typhoon in the Philippines. Globally, it was the deadliest tropical cyclone since Nargis hit Myanmar in 2008. Here, we use field measurements, eyewitness accounts, and video recordings to corroborate numerical simulations and to characterize the extremely high velocity flooding caused by the Typhoon Haiyan storm surge in both San Pedro Bay and on the more open Pacific Ocean coast. We then compare the surge heights from Typhoon Haiyan with historical records of an unnamed typhoon that took a similar path of destruction in October 1897 (Ty 1897) but which was less intense, smaller, and moved more slowly. The Haiyan surge was about twice the height of the 1897 event in San Pedro Bay, but the two storm surges had similar heights on the open Pacific coast. Until stronger prehistoric events are explored, these two storm surges serve as worst-case scenarios for this region. This study highlights that rare but disastrous events should be carefully evaluated in the context of enhancing community-based disaster risk awareness, planning, and response.


2014 ◽  
Vol 2 (10) ◽  
pp. 6241-6270
Author(s):  
J. Tablazon ◽  
C. V. Caro ◽  
A. M. F. Lagmay ◽  
J. B. L. Briones ◽  
L. Dasallas ◽  
...  

Abstract. A storm surge is the sudden rise of sea water generated by an approaching storm, over and above the astronomical tides. This event imposes a major threat in the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013 where more than 6000 people lost their lives. It has become evident that the need to develop an early warning system for storm surges is of utmost importance. To provide forecasts of the possible storm surge heights of an approaching typhoon, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. Bathymetric data, storm track, central atmospheric pressure, and maximum wind speed were used as parameters for the Japan Meteorological Agency Storm Surge Model. The researchers calculated the frequency distribution of maximum storm surge heights of all typhoons under a specific Public Storm Warning Signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of probable area inundation and flood levels of storm surges along coastal areas for a specific PSWS using the results of the frequency distribution. These maps were developed from the time series data of the storm tide at 10 min intervals of all observation points in the Philippines. This information will be beneficial in developing early warnings systems, static maps, disaster mitigation and preparedness plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate counter-measures for a given PSWS.


2018 ◽  
Vol 18 (3) ◽  
pp. 795-805 ◽  
Author(s):  
Sally L. Lavender ◽  
Ron K. Hoeke ◽  
Deborah J. Abbs

Abstract. Tropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1–2 ∘C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple idealised sensitivity analysis is performed using a high-resolution regional model to gain insight into the influence of SST on the track, size, intensity and associated rainfall of TC Yasi. A set of nine simulations with uniform SST anomalies of between −4 and 4 ∘C applied to the observed SSTs are analysed. The resulting surface winds and pressure are used to force a barotropic storm surge model to examine the influence of SST on the associated storm surge of TC Yasi. An increase in SST results in an increase in intensity, precipitation and integrated kinetic energy of the storm; however, there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SSTs lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 ∘C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temperatures. A large decrease in maximum storm surge height occurs when a negative SST anomaly is applied, suggesting if TC Yasi had occurred during non-La Niña conditions the associated storm surge may have been greatly diminished, with a decrease in storm surge height of over 3 m when the SST is reduced by 2 ∘C. In summary, increases in SST lead to an increase in the potential destructiveness of TCs with regard to intensity, precipitation and storm surge, although this relationship is not linear.


2014 ◽  
Vol 14 (12) ◽  
pp. 3279-3295 ◽  
Author(s):  
J. J. Yoon ◽  
J. S. Shim ◽  
K. S. Park ◽  
J. C. Lee

Abstract. The southern coastal area of Korea has often been damaged by storm surges and waves due to the repeated approach of strong typhoons every year. The integrated model system is applied to simulate typhoon-induced winds, storm surges, and surface waves in this region during Typhoon Sanba in 2012. The TC96 planetary boundary layer wind model is used for atmospheric forcing and is modified to incorporate the effect of the land's roughness on the typhoon wind. Numerical experiments are carried out to investigate the effects of land-dissipated wind on storm surges and waves using the three-dimensional, unstructured grid, Finite Volume Coastal Ocean Model (FVCOM), which includes integrated storm surge and wave models with highly refined grid resolutions along the coastal region of complex geometry and topography. Compared to the measured data, the numerical models have successfully simulated storm winds, surges, and waves. Better agreement between the simulated and measured storm winds has been found when considering the effect of wind dissipation by land roughness. In addition, this modified wind force leads to clearly improved results in storm surge simulations, whereas the wave results have shown only slight improvement. The study results indicate that the effect of land dissipation on wind force plays a significant role in the improvement of water level modeling inside coastal areas.


2014 ◽  
Vol 2 (8) ◽  
pp. 5315-5360
Author(s):  
J. J. Yoon ◽  
J. S. Shim ◽  
K. S. Park ◽  
J. C. Lee

Abstract. The southern coastal area of Korea has often been damaged by storm surges and waves, due to the repeated approach of strong typhoons every year. The integrated model system is applied to simulate typhoon-induced winds, storm surges, and surface waves in this region during Typhoon Sanba in 2012. The TC96 (planetary boundary layer model) wind model is used for atmospheric forcing and is modified to incorporate the effect of the land's roughness on the typhoon wind. Numerical experiments are carried out to investigate the effects of land-dissipated wind on storm surges and waves using a three dimensional, unstructured grid, Finite Volume Coastal Ocean Model (FVCOM), which includes integrated storm surge and wave models with highly refined grid resolutions along the coastal region of complex geometry and topography. Compared to the measured data, the numerical models have successfully simulated storm winds, surges, and waves. Better agreement between the simulated and measured storm winds has been found when considering the effect of wind dissipation by land roughness. In addition, this modified wind force leads to clearly improved results in storm surge simulations, whereas the wave results have shown only slight improvement. The study results indicate that the effect of land dissipation on wind force plays a significant role in the improvement of water level modeling inside coastal areas.


Sign in / Sign up

Export Citation Format

Share Document