scholarly journals The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: A sensitivity study

2017 ◽  
Author(s):  
Sally L. Lavender ◽  
Ron K. Hoeke ◽  
Deborah J. Abbs

Abstract. Tropical cyclones (TCs) cause widespread damage associated with strong winds, heavy rainfall and storm surge. Understanding changes in these characteristics associated with potential future climate scenario sea surface temperatures (SSTs), as well as variations with climate modes, such as the El Niño/Southern Oscillation, is important for mitigating impacts. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1–2 °C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple sensitivity analysis is performed to gain insight into the influence of SST on the track, size, intensity and potential destructiveness of TC Yasi, including rainfall and storm surge. In order to assess the ability of a high resolution regional model at simulating TC Yasi, the Weather Research and Forecasting (WRF) model is forced in a control run using atmospheric reanalyses and observed SST data over the period 31st January to 4th February 2013. The model is able to closely simulate the observed track, with the modelled landfall occurring within 50 km and 3-hours of the observed event. Additional simulations are carried out with uniform SST anomalies of between −4 °C and 4 °C applied to the observed SST's over the whole region in 1 degree increments, forming a set of nine simulations. The resulting surface winds and pressure were then used to force a barotropic storm surge model. An increase in SST results in an increase in intensity, precipitation and destructiveness of the storm, however there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SST lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 °C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temps. The largest change in storm surge occurs when a negative SST anomaly is applied with a decrease in storm surge height of over 3 m when the SST is reduced by 2 °C. In summary, increases in SST lead to an increase in the potential destructiveness of TCs, although this relationship is not linear.

2018 ◽  
Vol 18 (3) ◽  
pp. 795-805 ◽  
Author(s):  
Sally L. Lavender ◽  
Ron K. Hoeke ◽  
Deborah J. Abbs

Abstract. Tropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1–2 ∘C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple idealised sensitivity analysis is performed using a high-resolution regional model to gain insight into the influence of SST on the track, size, intensity and associated rainfall of TC Yasi. A set of nine simulations with uniform SST anomalies of between −4 and 4 ∘C applied to the observed SSTs are analysed. The resulting surface winds and pressure are used to force a barotropic storm surge model to examine the influence of SST on the associated storm surge of TC Yasi. An increase in SST results in an increase in intensity, precipitation and integrated kinetic energy of the storm; however, there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SSTs lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 ∘C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temperatures. A large decrease in maximum storm surge height occurs when a negative SST anomaly is applied, suggesting if TC Yasi had occurred during non-La Niña conditions the associated storm surge may have been greatly diminished, with a decrease in storm surge height of over 3 m when the SST is reduced by 2 ∘C. In summary, increases in SST lead to an increase in the potential destructiveness of TCs with regard to intensity, precipitation and storm surge, although this relationship is not linear.


Author(s):  
Justin Joseph Valdez ◽  
Tomoya Shibayama

In 2013 Typhoon Haiyan dealt strong winds and storm surges to Tacloban City, Philippines. After that, the standard public school buildings were designed using the load provisions of the updated 2015 National Structural Code of the Philippines. However, it is important to analyze if the school buildings can resist failure against another Haiyan storm surge event. Haiyan was simulated using the the Weather Research and Forecasting (WRF) Model, and the storm surge was simulated using the Finite Volume Community Ocean Model (FVCOM). The wind and flood loads were then calculated and applied on a two-story school building model in STAAD.Pro, and the maximum shear forces and bending moments in the 300 beams and columns were compared to its capacity.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/P3E1_aizbnE


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Jiming Jin ◽  
Norman L. Miller ◽  
Nicole Schlegel

The Weather Research and Forecasting (WRF) model version 3.0 developed by the National Center for Atmospheric Research (NCAR) includes three land surface schemes: the simple soil thermal diffusion (STD) scheme, the Noah scheme, and the Rapid Update Cycle (RUC) scheme. We have recently coupled the sophisticated NCAR Community Land Model version 3 (CLM3) into WRF to better characterize land surface processes. Among these four land surface schemes, the STD scheme is the simplest in both structure and process physics. The Noah and RUC schemes are at the intermediate level of complexity. CLM3 includes the most sophisticated snow, soil, and vegetation physics among these land surface schemes. WRF simulations with all four land surface schemes over the western United States (WUS) were carried out for the 1 October 1995 through 30 September 1996. The results show that land surface processes strongly affect temperature simulations over the (WUS). As compared to observations, WRF-CLM3 with the highest complexity level significantly improves temperature simulations, except for the wintertime maximum temperature. Precipitation is dramatically overestimated by WRF with all four land surface schemes over the (WUS) analyzed in this study and does not show a close relationship with land surface processes.


2013 ◽  
Vol 5 (2) ◽  
pp. 77-80 ◽  
Author(s):  
M Shamsad ◽  
MA Farukh ◽  
MJR Chowdhury ◽  
SC Basak

Bangladesh is one of the most disaster prone countries in the world and is a victim of frequent natural calamities like tropical cyclones, tornadoes, floods, storm surges and droughts. Sea surface temperature (SST) plays a vital role in determining ocean-atmosphere interaction. In this study we focused on understanding the behavior of SST anomaly prevailed in the region of Bay of Bengal mainly to assume the surface temperature signature for cyclone occurrence. For this study, the observed SST anomaly data were derived from NOAA Coast-watch using a combination of global and regional algorithms. The SST anomaly maps were produced using SAGA-GIS software where the SST lines were fixed at the mean of 30 years data. The AVHRR SST was compared with the climatological SST for the region of Bay of Bengal in 2010. The monthly SST anomaly for 2010 showed average departure of 0.7°C for all the months except June and October. It was found that the anomaly increases about 2°C at the end of September, and in October the basin bears no significant anomaly.DOI: http://dx.doi.org/10.3329/jesnr.v5i2.14797 J. Environ. Sci. & Natural Resources, 5(2): 77-80 2012


2010 ◽  
Vol 23 (14) ◽  
pp. 3907-3917 ◽  
Author(s):  
Sang-Ik Shin ◽  
Prashant D. Sardeshmukh ◽  
Robert S. Webb

Abstract The optimal anomalous sea surface temperature (SST) pattern for forcing North American drought is identified through atmospheric general circulation model integrations in which the response of the Palmer drought severity index (PDSI) is determined for each of 43 prescribed localized SST anomaly “patches” in a regular array over the tropical oceans. The robustness and relevance of the optimal pattern are established through the consistency of results obtained using two different models, and also by the good correspondence of the projection time series of historical tropical SST anomaly fields on the optimal pattern with the time series of the simulated PDSI in separate model integrations with prescribed time-varying observed global SST fields for 1920–2005. It is noteworthy that this optimal drought forcing pattern differs markedly in the Pacific Ocean from the dominant SST pattern associated with El Niño–Southern Oscillation (ENSO), and also shows a large sensitivity of North American drought to Indian and Atlantic Ocean SSTs.


2009 ◽  
Vol 22 (14) ◽  
pp. 3979-3992 ◽  
Author(s):  
Lucia Bunge ◽  
Allan J. Clarke

Abstract Decadal and longer time-scale variabilities of the best known El Niño–Southern Oscillation (ENSO) indexes are poorly correlated before 1950, and so knowledge of interdecadal variability and trend in ENSO indexes is dubious, especially before 1950. To address this problem, the authors constructed and compared physically related monthly ENSO indexes. The base index was El Niño index Niño-3.4, the sea surface temperature (SST) anomaly averaged over the equatorial box bounded by 5°N, 5°S, 170°W, and 120°W; the authors also constructed indexes based on the nighttime marine air temperature over the Niño-3.4 region (NMAT3.4) and an equatorial Southern Oscillation index (ESOI). The Niño-3.4 index used the “uninterpolated” sea surface temperature data from the Second Hadley Centre Sea Surface Temperature dataset (HadSST2), a dataset with smaller uncertainty and better geographical coverage than others. In constructing the index, data at each point for a given month were weighted to take into account the typical considerable spatial variation of the SST anomaly over the Niño-3.4 box as well as the number of observations at that point for that month. Missing monthly data were interpolated and “noise” was reduced by using the result that Niño-3.4 has essentially the same calendar month amplitude structure every year. This 12-point calendar month structure from April to March was obtained by an EOF analysis over the last 58 yr and then was fitted to the entire monthly time series using a least squares approach. Equivalent procedures were followed for NMAT3.4 and ESOI. The new ESOI uses Darwin atmospheric pressure in the west and is based on theory that allows for variations of the atmospheric boundary layer depth across the Pacific. The new Niño-3.4 index was compared with NMAT3.4, the new ESOI, and with a record of δ18O from a coral at Palmyra, an atoll inside the region Niño-3.4 (Cobb et al.). Correlation coefficients between Niño-3.4 and the three monthly indexes mentioned above before 1950 are 0.84, 0.87, 0.73 and 0.93, 0.86, 0.73 for decadal time scales. These relatively high correlation coefficients between physically related but independent monthly time series suggest that this study has improved knowledge of low-frequency variability. All four indexes are consistent with a rise in Niño-3.4 SST and the weakening of the equatorial Pacific winds since about 1970.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Song-You Hong ◽  
Jimy Dudhia ◽  
Young-Joon Kim

This paper describes the implementation of the orographic gravity wave drag (GWDO) processes induced by subgrid-scale orography in the global version of the Weather Research and Forecasting (WRF) model. The sensitivity of the model simulated climatology to the representation of shortwave radiation and the addition of the GWDO processes is investigated using the Kim-Arakawa GWDO parameterization and the Goddard, RRTMG (Rapid Radiative Transfer Model for GCMs), and Dudhia shortwave radiation schemes. This sensitivity study is a part of efforts of selecting the physics package that can be useful in applying the WRF model to global and seasonal configuration. The climatology is relatively well simulated by the global WRF; the zonal mean zonal wind and temperature structures are reasonably represented with the Kim-Arakawa GWDO scheme using the Goddard and RRTMG shortwave schemes. It is found that the impact of the shortwave radiation scheme on the modeled atmosphere is pronounced in the upper atmospheric circulations above the tropopause mainly due to the ozone heating. The scheme that excludes the ozone process suffers from a distinct cold bias in the stratosphere. Moreover, given the improper thermodynamic environment conditions by the shortwave scheme, the role of the GWDO process is found to be limited.


2015 ◽  
Vol 3 (2) ◽  
pp. 919-939 ◽  
Author(s):  
J. P. Lapidez ◽  
J. Tablazon ◽  
L. Dasallas ◽  
L. A. Gonzalo ◽  
K. M. Cabacaba ◽  
...  

Abstract. Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH), the flagship disaster mitigation program of the Department of Science and Technology (DOST), Government of the Philippines, to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948–2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.


Sign in / Sign up

Export Citation Format

Share Document