scholarly journals SOURCE MECHANISM OF THE TSUNAMI OP MARCH 28, 1964 IN ALASKA

1964 ◽  
Vol 1 (9) ◽  
pp. 10 ◽  
Author(s):  
W.M. G. Van Dorn

The distribution of permanent, vertical crustal dislocations, the times and directions of early water motion in and around the generation area, and the unusual low frequency character of the tsunami record obtained from Wake Island, all suggest that the tsunami associated with the great Alaskan earthquake of March 28, 1964 was produced by a dipolar movement of the earth's crust, centered along a line running from Hinchinbrook Island (Prince William Sound) southwesterly to the Trinity Islands. The positive pole of this disturbance encompassed most of the shallow shelf bordering the Gulf of Alaska, while the negative pole lay mostly under land. Thus, the early effect was the drainage of water from the shelf into the Gulf, thus generating a long solitary wave, which radiated out over the Pacific with very little dispersion. Tilting of Prince William Sound to the northwest produced strong seiching action in the deep, narrow adjacent fjords, thus inundating inhabited places already suffering from earth shock and slumping of the deltas on which they were situated. Preliminary calculations indicate that the initial positive phase of the tsunami contained about 2.3 x 102lergs of energy, as compared with 2.7 x 1022ergs computed for the tsunami of March 9, 1957 in the Andreanof Islands.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Mary A. Bishop ◽  
Jordan W. Bernard

Abstract Background Over the past two decades, various species of forage fish have been successfully implanted with miniaturized acoustic transmitters and subsequently monitored using stationary acoustic receivers. When acoustic receivers are configured in an array, information related to fish direction can potentially be determined, depending upon the number and relative orientation of the acoustic receivers. However, it can be difficult to incorporate directional information into frequentist mark-recapture methods. Here we show how an empirical Bayesian approach can be used to develop a model that incorporates directional movement information into the Arnason-Schwarz modeling framework to describe survival and migration patterns of a Pacific herring (Clupea pallasii) population in coastal Alaska, USA. Methods We acoustic-tagged 326 adult Pacific herring during April 2017 and 2018 while on their spawning grounds in Prince William Sound Alaska, USA. To monitor their movements, stationary acoustic receivers were deployed at strategic locations throughout the Sound. Receivers located at the major entrances to the Gulf of Alaska were arranged in parallel arrays to determine the directional movements of the fish. Informative priors were used to incorporate the directional information recorded at the entrance arrays into the model. Results A seasonal migratory pattern was found at one of Prince William Sound’s major entrances to the Gulf of Alaska. At this entrance, fish tended to enter the Gulf of Alaska during spring and summer after spawning and return to Prince William Sound during the fall and winter. Fish mortality was higher during spring and summer than fall and winter in both Prince William Sound and the Gulf of Alaska. Conclusions An empirical Bayesian modeling approach can be used to extend the Arnason-Schwarz modeling framework to incorporate directional information from acoustic arrays to estimate survival and characterize the timing and direction of migratory movements of forage fish.


2020 ◽  
Vol 148 (4) ◽  
pp. 1553-1565 ◽  
Author(s):  
Carl J. Schreck ◽  
Matthew A. Janiga ◽  
Stephen Baxter

Abstract This study applies Fourier filtering to a combination of rainfall estimates from TRMM and forecasts from the CFSv2. The combined data are filtered for low-frequency (LF, ≥120 days) variability, the MJO, and convectively coupled equatorial waves. The filtering provides insight into the sources of skill for the CFSv2. The LF filter, which encapsulates persistent anomalies generally corresponding with SSTs, has the largest contribution to forecast skill beyond week 2. Variability within the equatorial Pacific is dominated by its response to ENSO, such that both the unfiltered and the LF-filtered forecasts are skillful over the Pacific through the entire 45-day CFSv2 forecast. In fact, the LF forecasts in that region are more skillful than the unfiltered forecasts or any combination of the filters. Verifying filtered against unfiltered observations shows that subseasonal variability has very little opportunity to contribute to skill over the equatorial Pacific. Any subseasonal variability produced by the model is actually detracting from the skill there. The MJO primarily contributes to CFSv2 skill over the Indian Ocean, particularly during March–May and MJO phases 2–5. However, the model misses opportunities for the MJO to contribute to skill in other regions. Convectively coupled equatorial Rossby waves contribute to skill over the Indian Ocean during December–February and the Atlantic Ocean during September–November. Convectively coupled Kelvin waves show limited potential skill for predicting weekly averaged rainfall anomalies since they explain a relatively small percent of the observed variability.


1988 ◽  
Vol 15 (13) ◽  
pp. 1483-1486 ◽  
Author(s):  
J. C. Lahr ◽  
R. A. Page ◽  
C. D. Stephens ◽  
D. H. Christensen

2010 ◽  
Vol 23 (14) ◽  
pp. 3855-3873 ◽  
Author(s):  
Alexey V. Fedorov

Abstract Physical processes that control ENSO are relatively fast. For instance, it takes only several months for a Kelvin wave to cross the Pacific basin (Tk ≈ 2 months), while Rossby waves travel the same distance in about half a year. Compared to such short time scales, the typical periodicity of El Niño is much longer (T ≈ 2–7 yr). Thus, ENSO is fundamentally a low-frequency phenomenon in the context of these faster processes. Here, the author takes advantage of this fact and uses the smallness of the ratio ɛk = Tk/T to expand solutions of the ocean shallow-water equations into power series (the actual parameter of expansion also includes the oceanic damping rate). Using such an expansion, referred to here as the low-frequency approximation, the author relates thermocline depth anomalies to temperature variations in the eastern equatorial Pacific via an explicit integral operator. This allows a simplified formulation of ENSO dynamics based on an integro-differential equation. Within this formulation, the author shows how the interplay between wind stress curl and oceanic damping rates affects 1) the amplitude and periodicity of El Niño and 2) the phase lag between variations in the equatorial warm water volume and SST in the eastern Pacific. A simple analytical expression is derived for the phase lag. Further, applying the low-frequency approximation to the observed variations in SST, the author computes thermocline depth anomalies in the western and eastern equatorial Pacific to show a good agreement with the observed variations in warm water volume. Ultimately, this approach provides a rigorous framework for deriving other simple models of ENSO (the delayed and recharge oscillators), highlights the limitations of such models, and can be easily used for decadal climate variability in the Pacific.


2012 ◽  
Vol 69 (5) ◽  
pp. 955-969 ◽  
Author(s):  
Sara E. Miller ◽  
Milo Adkison ◽  
Lewis Haldorson

Water column stability has been hypothesized to affect growth and ultimately survival of juvenile fish. We estimated the relationships between stability and the growth, condition, and marine survival of several stocks of pink salmon ( Oncorhynchus gorbuscha ) within Prince William Sound (PWS), Alaska, USA, and the northern coastal Gulf of Alaska (GOA) shelf. There was a stronger correlation among the biological parameters of the fish than between the biological parameters and physical conditions. While stability and fish condition during early marine residence in PWS were important to year-class survival, stability of the water column that juveniles experienced as they migrated to the open waters of the GOA did not play a key role in determining survival to adulthood. Below-average stability just prior to capture within PWS combined with positive fish condition was related to increased year-class survival. Our results are similar to previous studies that concluded that slower and weaker development of stratification with a deeper mixed layer depth may be important for juvenile pink salmon survival in PWS.


2021 ◽  
Author(s):  
Sem Vijverberg ◽  
Dim Coumou

<p>Heatwaves can have devastating impact on society and reliable early warnings at several weeks lead time are needed. Heatwaves are often associated with quasi-stationary Rossby waves, which interact with sea surface temperature (SST). Previous studies showed that north-Pacific SST can provide long-lead predictability for eastern U.S. temperature, moderated by an atmospheric Rossby wave. The exact mechanisms, however, are not well understood. Here we analyze Rossby waves associated with heatwaves in western and eastern US. Causal inference analyses reveal that both waves are characterized by positive ocean-atmosphere feedbacks at synoptic timescales, amplifying the waves. However, this positive feedback on short timescales is not the causal mechanism that leads to a long-lead SST signal. Only the eastern US shows a long-lead causal link from SSTs to the Rossby wave. We show that the long-lead SST signal derives from low-frequency PDO variability, providing the source of eastern US temperature predictability. We use this improved physical understanding to identify more reliable long-lead predictions. When, at the onset of summer, the Pacific is in a pronounced PDO phase, the SST signal is expected to persist throughout summer. These summers are characterized by a stronger ocean-boundary forcing, thereby more than doubling the eastern US temperature forecast skill, providing a temporary window of enhanced predictability.</p>


1976 ◽  
Vol 59 (3) ◽  
pp. 700-702 ◽  
Author(s):  
R. H. Mellen ◽  
D. G. Browning

Biology Open ◽  
2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Susanne Åkesson ◽  
Johanna Grönroos ◽  
Giuseppe Bianco

ABSTRACT We investigated the migratory orientation of early and late captured dunlins, Calidris alpina, by recording their migratory activity in circular orientation cages during autumn at a staging site in southwest Alaska and performed route simulations to the wintering areas. Two races of dunlins breeding in Alaska have different wintering grounds in North America (Pacific Northwest), and East Asia. Dunlins caught early in autumn (presumably Calidris alpinapacifica) oriented towards their wintering areas (east-southeast; ESE) supporting the idea that they migrate nonstop over the Gulf of Alaska to the Pacific Northwest. We found no difference in orientation between adult and juveniles, nor between fat and lean birds or under clear and overcast skies demonstrating that age, energetic status and cloud cover did not affect the dunlins’ migratory orientation. Later in autumn, we recorded orientation responses towards south-southwest suggesting arrival of the northern subspecies Calidris alpinaarcticola at our site. Route simulations revealed multiple compass mechanisms were compatible with the initial direction of early dunlins wintering in the Pacific Northwest, and for late dunlins migrating to East Asia. Future high-resolution tracking would reveal routes, stopover use including local movements and possible course shifts during migration from Alaska to wintering sites on both sides of the north Pacific Ocean.


2021 ◽  
Vol 51 (12) ◽  
pp. 3557-3572

AbstractThe currents and water mass properties at the Pacific entrance of the Indonesian seas are studied using measurements of three subsurface moorings deployed between the Talaud and Halmahera Islands. The moored current meter data show northeastward mean currents toward the Pacific Ocean in the upper 400 m during the nearly 2-yr mooring period, with the maximum velocity in the northern part of the channel. The mean transport between 60- and 300-m depths is estimated to be 10.1–13.2 Sv (1 Sv ≡ 106 m3 s−1) during 2016–17, when all three moorings have measurements. The variability of the along-channel velocity is dominated by low-frequency signals (periods > 150 days), with northeastward variations in boreal winter and southwestward variations in summer in the superposition of the annual and semiannual harmonics. The current variations evidence the seasonal movement of the Mindanao Current retroflection, which is supported by satellite sea level and ocean color data, showing a cyclonic intrusion into the northern Maluku Sea in boreal winter whereas a leaping path occurs north of the Talaud Islands in summer. During Apri–July, the moored CTDs near 200 m show southwestward currents carrying the salty South Pacific Tropical Water into the Maluku Sea.


Sign in / Sign up

Export Citation Format

Share Document