scholarly journals Catalytic Conversion of Residual Palm Oil in Spent Bleaching Earth (SBE) By HZSM-5 Zeolite based-Catalysts

Author(s):  
Mohd Lukman Musa ◽  
Ramli Mat ◽  
Tuan Amran Tuan Abdullah

Bleaching earth is used to remove colour, phospholipids, oxidized products, metals and residual gums in the palm oil process refinery. Once adsorption process end, the spent bleaching earth (SBE) which contains approximately 20-40 wt. % of the adsorbed oil was usually disposed to landfills. The oil content in SBE was recovered by catalytic cracking using transition metal (Cu, Zn, Cr, and Ni) doped HZSM-5 zeolite in a batch reactor (pyrolysis zone) and fixed bed reactor (catalyst bed). The 5 wt. % of each metallic was introduced in HZSM-5 zeolite using incipient wetness impregnation method. The main objective of this study was to investigate the performance of modified HZSM-5 zeolite for cracking of residual oil in SBE. The physicochemical properties of the catalysts were characterized    using XRD, FTIR, Nitrogen adsorption, and TPD-NH3.  Liquid biofuel obtained from cracking was analyzed by GC-MS. The incorporation of metallic loaded on HZSM-5 zeolite has reduced the surface area of the catalyst that gives a significant impact to the catalytic behavior. The Ni/HZSM-5 zeolite exhibited the highest yields of alkenes as compared to others but slightly decreases the yield of alkanes whereas in contrast with the Cr/HZSM-5, the obtained alkanes were found higher than that of alkenes. In addition, the Cr/HZSM-5 and Ni/HZSM-5 favored the conversion of polycyclic aromatics to mono-aromatics, whereas parent HZSM-5 catalyst favored the formation of poly-aromatics. These results indicated that the metal loaded on HZSM-5 can promote the cracking of heavy fractions to lighter hydrocarbon thus can be used for cracking oil in SBE. Copyright © 2018 BCREC Group. All rights reservedReceived: 10th December 2017; Revised: 31st May 2018; Accepted: 10th June 2018How to Cite: Musa, M.L., Mat, R., Abdullah, T.A.T. (2018). Catalytic Conversion of Residual Palm Oil in Spent Bleaching Earth (SBE) By HZSM-5 Zeolite based-Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 456-465 (doi:10.9767/bcrec.13.3.1929.456-465)Permalink/DOI: https://doi.org/10.9767/bcrec.13.3.1929.456-465 

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 553
Author(s):  
Mansurbek Urol ugli Abdullaev ◽  
Sungjune Lee ◽  
Tae-Wan Kim ◽  
Chul-Ung Kim

Among the zeolitic catalysts for the ethylene-to-propylene (ETP) reaction, the SSZ-13 zeolite shows the highest catalytic activity based on both its suitable pore architecture and tunable acidity. In this study, in order to improve the propylene selectivity further, the surface of the SSZ-13 zeolite was modified with various amounts of tungsten oxide ranging from 1 wt% to 15 wt% via a simple incipient wetness impregnation method. The prepared catalysts were characterized with several analysis techniques, specifically, powder X-ray diffraction (PXRD), Raman spectroscopy, temperature-programmed reduction of hydrogen (H2-TPR), temperature-programmed desorption of ammonia (NH3-TPD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and N2 sorption, and their catalytic activities were investigated in a fixed-bed reactor system. The tungsten oxide-modified SSZ-13 catalysts demonstrated significantly improved propylene selectivity and yield compared to the parent H-SSZ-13 catalyst. For the tungsten oxide loading, 10 wt% loading showed the highest propylene yield of 64.9 wt%, which was 6.5 wt% higher than the pristine H-SSZ-13 catalyst. This can be related to not only the milder and decreased strong acid sites but also the diffusion restriction of bulky byproducts, as supported by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) observation.


2021 ◽  
Vol 1 (1-2) ◽  
pp. 15
Author(s):  
Elham Yaghoobpour ◽  
Yahya Zamani ◽  
Saeed Zarrinpashne ◽  
Akbar Zamaniyan

Promoters and their loading amount have crucial roles in cobalt Fischer – Tropsch catalysts. In this regard, the effects of vanadium oxide (V2O5) as a proposed promoter for Co catalyst supported on TiO2 have been investigated. Three catalysts with 0, 1, and 3 wt.% of V2O5 promoter loading are prepared by the incipient wetness impregnation method, and characterized by the BET surface area analyzer, XRD, H2-TPR, and TEM techniques. The fixed-bed reactor was employed for their evaluations. It was found that the catalyst containing 1 wt.% V2O5 has the best performance among the evaluated catalysts, demonstrating remarkable selectivity: 92 % C5+ and 5.7 % CH4, together with preserving the amount of CO conversion compared to the unpromoted catalyst. Furthermore, it is reported that the excess addition of V2O5 promoter (> 1 wt.%) in the introduced catalyst leads to the detrimental effect on the CO conversion and C5+ selectivity, mainly owing to diminished active sites by V2O5 loading.


2019 ◽  
Vol 19 (2) ◽  
pp. 86-94
Author(s):  
R. G. Moqadam ◽  
A. Tavasoli ◽  
M. Salimi

Manganese and nickel co-modified K/Co/MoS2 catalysts supported on graphene were prepared by incipient wetness impregnation method for application in higher alcohol synthesis (HAS). All catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorptiondesorption, temperature-programmed reduction (TPR) and transmission electron microscopy (TEM). The effect of promoters, as well as supports on higher alcohol synthesis production from syngas, was investigated in a fixed bed reactor. The process was performed with an molar ratio H2 : CO = 1 : 1, operating pressure and temperature of 4 MPa and 330 °C, respectively, and gas hourly space velocity (GHSV) 3.84 m3 (STP)/(kgcat.·h) as reaction conditions (STP – standard temperature and pressure). Results originated from practical works showed that the addition of Ni to the graphene-based catalyst increased HAS production and decreased methanol formation. The total alcohols space-time yield (STY) and alcohol selectivity on Ni/Mn/Co/Mo/K/graphene catalyst reached a maximum at 0.41 galc./(gcat.·h) and 63.51 %, respectively, which is higher than the same composition over alumina supported catalyst.


2011 ◽  
Vol 287-290 ◽  
pp. 2110-2115
Author(s):  
Gang Li Zhu ◽  
Tao Chen ◽  
Xue Dong Jiang ◽  
Hai Liang Zhang ◽  
Bo Lun Yang

Dehydrogenation process of organic chemical hydrides was improved by modifying the catalyst of nickel-activated carbon (Ni/AC) with lanthanum (La). The catalysts were prepared in impregnation method with different amounts of La and Ni. The textural properties and morphology of catalyst were analyzed by nitrogen adsorption and transmission electron microscope equipped with energy dispersive spectrometer respectively. The effects such as metal content and granule size on the dehydrogenation of cyclohexane were investigated in fixed bed reactor. The results show that the metallic active components can be well dispersed on the support, and the elements analysis indicates the metal species tend to assemble on the surface layer rather than being distributed equally in the whole catalyst. The La modified catalyst LaNi/AC exhibited superior catalytic performance to Ni/AC and the conversion was 45% for LaNi/AC catalyst at 673K, while only 34 % for Ni/AC under the same conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Hanhan Wang ◽  
Tingting Lu ◽  
Yuna Li ◽  
Bo Wu ◽  
Jianwei Xue ◽  
...  

The catalytic dehydrogenation reaction of tail chlorine by Pd was studied using a fixed-bed reactor at low temperature from 30 to 100°C. Different catalyst supports such as SiO2 and Al2O3 were applied to prepare Pd catalysts by the incipient-wetness impregnation method. And the catalysts were characterized by XRD, FTIR, XPS, SEM, and N2 adsorption-desorption. The catalyst Pd loading on both SiO2 and Al2O3 had a catalytic effect on the dehydrogenation reaction, but the carrier Al2O3 was more superior. The hydrogen conversion and selectivity of hydrogen-oxygen reaction increased first and then decreased with Pd loading amount and temperature by using Pd/Al2O3 as catalysts, but the influence of temperature was limited when it was higher than 60°C. The hydrogen conversion was 97.38% and selectivity of hydrogen-oxygen reaction was 79% when the reaction temperature was at 60°C with 1 wt.% Pd/Al2O3.


2015 ◽  
Vol 4 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Sri Kadarwati ◽  
Sri Wahyuni

Catalytic cracking process of palm oil into bio-fuel using Ni/zeolite catalysts (2-10% wt. Ni) at various reaction temperatures (400-500oC) in a flow-fixed bed reactor system has been carried out. Palm oil was pre-treated to produce methyl ester of palm oil as feedstock in the catalytic cracking reactions. The Ni/zeolite catalysts were prepared by wetness impregnation method using Ni(NO3)2.6H2O as the precursor. The products were collected and analysed using GC, GC-MS, and calorimeter. The effects of process temperatures and Ni content in Ni/zeolite have been studied. The results showed that Ni-2/zeolite could give a yield of 99.0% at 500oC but only produced gasoline fraction of 18.35%. The physical properties of bio-fuel produced in this condition in terms of density, viscosity, flash point, and specific gravity were less than but similar to commercial fuel. The results of performance test in a 4-strike engine showed that the mixture of commercial gasoline (petrol) and bio-fuel with a ratio of 9:1 gave similar performance to fossil-based gasoline with much lower CO and O2 emissions and more efficient combustion


2012 ◽  
Author(s):  
Tirena Bahnur Siregar ◽  
Nor Aishah Saidina Amin

Peretakan bermangkin minyak kelapa sawit kepada gasolin menggunakan H–ZSM–5 dan H–Beta dijalankan pada tekanan atmosfera dan kadar alir mengikut berat 2.5 jam–1. Suhu tindak balas ditetapkan dalam julat 450°C to 525°C. Mangkin yang dikalsinkan telah dicirikan menggunakan teknik pembelauan sinar X, penjerapan piridina–spektrofotometri inframerah dan penjerapan nitrogen. Hasil cecair dan gas dianalisis menggunakan kromatografi gas (FID) dan (TCD). Peningkatan suhu tidak balas meninggikan penukaran minyak kelapa sawit. Penukaran minyak kelapa sawit dan kepemilihan gasolin tertinggi diperolehi dengan mangkin H–ZSM–5, masing–masing ialah 96.12% berat dan 29.92% berat. Walaupun penukaran minyak kelapa sawit dan kepemilihan gasolin untuk kedua–dua mangkin adalah tinggi, tetapi H–ZSM–5 menunjukkan hasil yang lebih baik berbanding H–Beta pada semua suhu. Gasolin yang dihasilkan menggunakan H–ZSM–5 mempunyai kandungan naftena yang tinggi, diikuti oleh isoparafin, olefin, aromatik dan sedikit paraffin, manakala gasolin yang terhadil menggunakan H–Beta mengandungi olefin, naftena, paraffin dan aromatik. Hasil sampingan utama adalah gas yang terdiri daripada komponen C1–C3 menggunakan H–ZSM–5 dan C3–C4 menggunakan H–Beta Kata kunci: Zeolit; H–ZSM–5; H–Beta; peretakan; minyak kelapa sawit; gasolin The catalytic cracking of palm oil to gasoline over H–ZSM–5 and H–Beta was studied in fixed bed reactor operated at atmospheric pressure and weight hourly space velocity (WHSV) of 2.5 h–1. The reaction temperature was varied between 450°C to 525°C. The calcined catalysts were characterized using X–Ray Diffraction (XRD), Pyridine Adsorption–Infrared Spectrophotometry (Py–IR) and Nitrogen Adsorption (NA) methods. The liquid and gaseous products were analyzed using (FID) and (TCD) gas chromatography respectively. Increase in reaction temperature led to higher palm oil conversion. The highest conversion and gasoline selectivity obtained at 525°C were 96.12 wt% and 29.92 wt% respectively with H–ZSM–5. Although the conversion and the gasoline selectivity of both catalysts was high, but H–ZSM–5 performed better than H–Beta at all temperature range. Gasoline produced using H–ZSM–5 consisted mainly of naphthenes beside isoparaffins, olefins, aromatics and a small amount of paraffins, while the gasoline obtained by using H–Beta contained olefins, naphthenes, paraffins and aromatics. Gas was the major side product, which consisted mainly of C1–C3 for using H–ZSM–5 and C3–C4 compounds for using H–Beta. Key words: Zeolite; H–ZSM–5; H–Beta; cracking, palm oil; gasoline


Author(s):  
Chen-Bin Wang ◽  
Siao Wun Liu ◽  
Kuan Fu Ho ◽  
Hsin Hua Huang ◽  
Chih Wei Tang ◽  
...  

Hydrogen production through steam reforming of ethanol (SRE) over the Ca-modified Co/SBA-15 catalysts was studied herein to evaluate the catalytic activity, stability and the behavior of coke deposition. The Ca-modified SBA-15 supports were prepared from the Ca(NO3)2·4H2O (10 wt%) which was incorporated to SBA-15 by incipient wetness impregnation (assigned as Ca/SBA-15) and direct hydrothermal (assigned as Ca-SBA-15) method. The active cobalt species from the Co(NO3)2·6H2O (10 wt%) was loaded to SiO2, SBA-15 and modified-SBA-15 supports with incipient wetness impregnation method to obtain the cobalt catalysts (named as Co/SiO2, Co/SBA-15, Co-Ca/SBA-15 and Co/Ca-SBA-15, respectively). The prepared catalysts were characterized by using X-ray diffraction (XRD), temperature programmed reduction (TPR), transmission electron microscopy (TEM) and BET. The catalytic performance of the SRE reaction was evaluated in a fixed-bed reactor. The results indicated that the Co/Ca-SBA-15 catalyst was preferential among these catalysts and the ethanol can be converted completely at 375 °C. The hydrogen yield (YH2) approached 4.76 at 500 °C and less coke deposited. Further, the long-term stability test of this catalyst approached 100 h at 500 °C and did not deactivate.


2021 ◽  
Vol 77 (1) ◽  
pp. 26-35
Author(s):  
V. Balasundram ◽  
N. Ibrahim ◽  
R. Isha

The main objective of the current work is to investigate the influence of reaction temperature on catalytic pyrolysis of High-Density Polyurethane (HDPE) over Ni/Ce/Al2O3 into enriched hydrocarbons of pyrolytic oil and gas The experiments were performed at four different pyrolysis reaction temperatures (500, 600, 700, and 800 °C) via in-situ fixed bed reactor. The Al2O3 (75 wt.%) was used as a support, while nickel (20 wt.%) and cerium (5 wt.%) were impregnated as promoters via incipient wetness impregnation method. The catalyst to plastic mass ratio was kept constant at 1:1 for all investigated samples. The results revealed that the Ni/Ce/Al2O3 catalyst has synergistic effects on the catalytic pyrolysis of HDPE into a high yield of hydrocarbon compounds (C5 – C20) in pyrolytic oil and hydrogen gas composition in pyrolytic gas. The highest yield of pyrolytic oil was achieved at 700 °C (53.23 %), while the highest yield of pyrolytic gas was achieved at 800 °C (67.85 %). The small molecular hydrocarbons in pyrolytic oil (C5 - C9) decreases with increasing temperature from 500 to 800 °C. The highest hydrogen gas yield of 77.59 %. was achieved at 700 °C. Thus, this research has economic feasibility in producing alternative valuable energy from the plastic waste stream.


2013 ◽  
Vol 13 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Sri Kadarwati ◽  
Fitri Rahmawati ◽  
Puji Eka Rahayu ◽  
Kasmadi Imam Supardi

Kinetics and mechanisms of Ni/zeolite-catalyzed cracking reaction of methyl ester palm oil (MEPO) were studied using a continuous flow-fixed bed reactor system at an atmospheric pressure. The catalyst was prepared by wet impregnation method with a solution of nickel nitrate hexahydrate as the precursor and zeolite as carrier. The characteristics of catalyst including active Ni metal content, crystallinity, total acidity, and porosity were evaluated. The reactions were performed with a varied hydrogen flow rate as a carrier gas as well as a reductant and reaction time. Liquid products were analyzed by GC. Analysis by GC-MS was only conducted on a product at hydrogen flow rate with the best conversion. It has been shown that the catalyst has a superior character for hydrocracking reactions of MEPO into green fuel. No considerable effect of hydrogen flow rate on the total conversion was observed. The tests showed that the kinetics of Ni/zeolite-catalyzed cracking reaction followed pseudo-first order kinetics. GC-MS analysis revealed the formation of light hydrocarbon products with C6-C8 of aliphatic and cyclic components without oxygenates. Distribution of the product indicated that the cracking reaction as well as the isomerization of the products of hydrocracking occurred. Thus, Ni/zeolite-catalyzed cracking involved cracking /hydrogenation, isomerization, cyclization, and deoxygenation.


Sign in / Sign up

Export Citation Format

Share Document