scholarly journals Effect of Dilute Acid and Alkaline Pretreatments on Enzymatic Saccharfication of Palm Tree Trunk Waste for Bioethanol Production

Author(s):  
Kusmiyati Kusmiyati ◽  
Sakina Tunissa Anarki ◽  
Sabda Wahyu Nugroho ◽  
Reistu Widiastutik ◽  
Hadiyanto Hadiyanto

The sugar palm tree (Arenga pinnata) was abundant in Indonesia and has high cellulose contents for bioethanol production. However, the lignin content was the major drawback which could inhibit saccharification enzymes and therefore removing the lignin from the biomass is important. This paper evaluated the effects of pretreatments  using nitric acid (HNO3) and ammonium hydroxide (NH4OH) at 2 to 10% (v/v) on reducing sugar and ethanol contents and compared with the effects of steam pre-treatment. The pretreated samples were hydrolyzed using cellulase enzymes at pH 5.0 with a substrate concentration of 10% (w/v) for 24 to 72 h at 50 °C. Subsequent assessments of enzymatic saccharification following pre-treatment with 10% (v/v) HNO3 showed maximum reducing   and total sugar contents in palm tree trunk waste of 5.320% and 5.834%, respectively, after 72 h of saccharification. Following pretreatment with 10% (v/v) of NH4OH, the maximum reducing and total sugar contents of palm tree trunk waste were 2.892% and 3.556%, respectively, after 72 h of saccharification. In comparison, steam pretreatments gave maximum reducing sugar and total sugar contents of 1.140% and 1.315% under the same conditions. Simultaneous saccharification and fermentation (SSF) was conducted at 37 °C (pH 4.8) and 100 rpm for 120 h using 10% (v/v) Saccharomyces cerevisiae and cellulase enzyme with a substrate concentration of 10% (w/v). The result showed the highest ethanol content of 2.648% was achieved by using 10% (v/v) HNO3. The use of 10% (v/v) NH4OH gained a yield of 0.869% ethanol while the steam pretreatment could obtained 0.102% ethanol.  Copyright © 2019 BCREC Group. All rights reserved 

Author(s):  
Sunil Kodishetty Ramaiah ◽  
Girisha Shringala Thimappa ◽  
Lokesh Kyathasandra Nataraj ◽  
Proteek Dasgupta

2014 ◽  
Vol 875-877 ◽  
pp. 242-245
Author(s):  
Jutarut Pornpunyapat ◽  
Wilaiwan Chotigeat ◽  
Pakamas Chetpattananondh

Bioethanol is widely used as renewable resource due to its safe to produce and environmentally friendly. However, knowledge on ethanol production from pineapple peel juice (Pattawia spp) is far from sufficient. In this work, pineapple peel juice (initial pH at 5) was fermented at various yeast contents (1, 3 and 5% by wt.) and fermentation times (3, 5 and 7 days) in order to investigate ethanol production characteristics. Yeast, Sacchromyces cerevisiae was grown on pineapple peel juice. The squeezed juice contained 11% of total sugar and 5% of reducing sugar. The results indicated that the optimum ethanol production was yeast contents of 5% by wt. and fermentation times of 5 days which gave the ethanol production of 9.08g/l. The ethanol at a higher yeast content also had a higher ethanol concentration.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009262
Author(s):  
Eric Behle ◽  
Adélaïde Raguin

The processing of agricultural wastes towards extraction of renewable resources is recently being considered as a promising alternative to conventional biofuel production. The degradation of agricultural residues is a complex chemical process that is currently time intensive and costly. Various pre-treatment methods are being investigated to determine the subsequent modification of the material and the main obstacles in increasing the enzymatic saccharification. In this study, we present a computational model that complements the experimental approaches. We decipher how the three-dimensional structure of the substrate impacts the saccharification dynamics. We model a cell wall microfibril composed of cellulose and surrounded by hemicellulose and lignin, with various relative abundances and arrangements. This substrate is subjected to digestion by different cocktails of well characterized enzymes. The saccharification dynamics is simulated in silico using a stochastic procedure based on a Gillespie algorithm. As we additionally implement a fitting procedure that optimizes the parameters of the simulation runs, we are able to reproduce experimental saccharification time courses for corn stover. Our model highlights the synergistic action of enzymes, and confirms the linear decrease of sugar conversion when either lignin content or crystallinity of the substrate increases. Importantly, we show that considering the crystallinity of cellulose in addition to the substrate composition is essential to interpret experimental saccharification data. Finally, our findings support the hypothesis of xylan being partially crystalline.


Bioethanol ◽  
2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Maria C. Fernandes ◽  
Ivone Torrado ◽  
Florbela Carvalheiro ◽  
Vânia Dores ◽  
Vera Guerra ◽  
...  

AbstractResidues from olive oil industry such as Extracted Olive Pomace (EOP) are potential substrates for bioethanol production. In this work, enzymatic hydrolysis of EOP pretreated by dilute acid hydrolysis (DAH) was assessed, and the enzymatic hydrolysis and bioconversion were carried out both by separate hydrolysis and fermentation (SHF) and pre-saccharification followed by simultaneous saccharification and fermentation (PSSF). DAH led to a significant removal hemicellulose, but the subsequent enzymatic treatments showed that the resulting residue was still partially recalcitrant to cellulase hydrolysis. Size reduction and further treatment of EOP-DAH with an alkaline solution were also tested. Alkaline post-treatment allowed a decrease in lignin content, but had little effect on enzymatic saccharification comparing to size reduction. Hence fermentation study was performed with ground EOP-DAH. The PSSF process showed a relatively higher bioethanol fermentation yield (0.46 gg-1) when compared to the SHF process.


2019 ◽  
Vol 65 (1) ◽  
Author(s):  
Masatoshi Todaka ◽  
Wasana Kowhakul ◽  
Hiroshi Masamoto ◽  
Mikiji Shigematsu

Abstract This study investigated the use of glycerol–fatty acid sodium soap mixtures to delignify woody biomass as a model for utilization of crude glycerol by-product from biodiesel manufacture. Lignin-bearing glycerol was also produced. Delignification was carried out using glycerol mixed with sodium salts of laurate, stearate, oleate, or linoleate at 100–250 °C for 0.5–3 h. Oak, beech, bamboo, and rice straw were easily delignified by 20% sodium oleate dissolved in glycerol at around 150 °C for 1 h. For softwood (Japanese cedar and spruce), delignification did not occur below 200 °C. However, the lignin content decreased from 37.5% in untreated Japanese cedar to 10.6% and from 29.4% in untreated spruce to 11.2% by treatment at 250 °C. Japanese cedar was not delignified in glycerol mixtures with oleic acid or sodium acetate. It is suggested that the surfactant activity of soap assists delignification, but the alkaline action of sodium acetate was not effective. Enzymatic saccharification of delignified Japanese cedar (9.3% lignin) and oak (3.6% lignin) samples gave glucose yields of 0.55–0.67 g/g after 72 h and these yields were comparable with that from pure cellulose (0.77 g/g). Lignin dissolution also increased the calorific value of the collected glycerol fraction from 20 to 25 MJ/kg. The results suggest that a waste-free delignification method can be achieved based on the combined processes of biodiesel and bioethanol production.


2016 ◽  
Vol 36 (1) ◽  
pp. 296-301
Author(s):  
DY Tsunatu ◽  
KG Atiku ◽  
TT Samuel ◽  
BI Hamidu ◽  
DI Dahutu

The production of bio-ethanol from Rice Straw (Oryza sativa) was carried out using rice straw as a feedstock and a combination of Yeast Extracts Peptone Dextrose (YEPD)at 0.2%(w/v) 0.4%(w/v), 0.6%(w/v), 0.8%(w/v) and 1%(w/v) concentrations and Saccharomyces cerevisiae (yeast) at 0.5% (w/v), 1%(w/v), 1.5%(w/v), 2%(w/v) and 2.5%(w/v) concentrations as cells for fermentation. The study determined the most suitable pre-treatment method from the following pretreatment methods; 1M NaOH and heating. IM NaOH pre-treatment gave the highest cellulose and lowest lignin content. The effects of substrate concentration values of 1g/l, 2g/l, 4g/l, 6g/l and 8g/l; with particle size of 300μm and cell loading combination of YEPD at 0.2%(w/v) 0.4%(w/v), 0.6%(w/v), 0.8%(w/v), 1%(w/v) concentrations and Saccharomyces cerevisiae (yeast) at 0.5% (w/v), 1%(w/v), 1.5%(w/v), 2%(w/v), 2.5%(w/v) on the fermentation process were investigated to obtain optimum conditions of fermentation. The optimum conditions of fermentation were obtained at temperature of 330C, pH value of 4.0, substrate concentration of 4g/l, particle size 300μm and YEPD to yeast ratio of 0.8/1.5 after 72 hours of fermentation time. Also substrate concentration of 4g/l, gave highest bioethanol yield of 49.50%. http://dx.doi.org/10.4314/njt.v36i1.36


2018 ◽  
Vol 156 ◽  
pp. 01003 ◽  
Author(s):  
Kusmiyati ◽  
Duwi Maryanto ◽  
Ringga Sonifa ◽  
Sabda Aji Kurniawan ◽  
H. Hadiyanto

Starch-Free Sugar Palm Trunk (Arenga pinnata) can be utilized to produce bioethanol because of their high lignocellulosic contents. Production of bioethanol from lignocellulosic materials consist of pre-treatment, saccharification and fermentation processes. In this work, conversion of starch-free sugar palm trunk (Arenga pinnata) to fermentable sugar and bioethanol was carried out through g pretreatment, saccharification and fermentation processes. The pretreatment was carried out by addition of 1% (v/v) HNO3 and NH4OH for 30 min and 60 min, respectively. The saccharification was carried out at enzyme celullase loadings of 10 and 20 FPU/g and substrate loadings of 10 and 20 g for NH4OH pretreated samples. Fermentation was carried out using two methods i.e. separated hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) techniques. The results showed that pretreatment using NH4OH was more effective than HNO3 for 60 minutes. IFurthermore, the results also presented the reduction of the lignin content of 9.44% and the increase of cellulose content to 18.56% for 1% (v/v) NH4OH 60 min of pretreatment. The increase of enzyme cellulase (20 FPU/g substrate) and substrate loading (20 g) could produce more reducing sugar (17.423 g/L and 19.233 g/L) than that at 10 FPU/g substrate and 10 g substrate (11.423 g/L and 17.423 g/L), respectively. The comparison of SHF and SSF showed that SHF process yielded higher ethanol (8.11 g/L) as compared to SSF (3.95 g/L) and nontreatment process (0.507 g/L) for 72 h..


Author(s):  
Sanusi A. ◽  

There is increasing interest in the area of biofuel production due to fear of fossil fuel extinction as a result of over exploitation and crises. During biofuel production, substrate needs to undergo pre-treatment and hydrolysis where acids and alkali are mostly used. In this study, Acremonium butyri was used for both pre-treatment and hydrolysis. Structural compositions of the rice husk were determined. Extractives, hemicellulose and Lignin content was determined via extraction using Soxhlet extractor while cellulose was determined as the difference from the extractives, hemicelluloses and lignin. Acremonium butyri was isolated from dried roots of Piliostigma reticulatum (Kalgo) by keeping the roots in a clean plastic for a period of 7 days on moist environment after which fungal growth appeared. The growth was aseptically transferred on to prepared S.D.A plate and kept at room temperature. The fungal growth was identified as based on the physical and microscopic characteristics. About 50g of rice husk was mixed with 500 ml of distilled water in the ration of 1:10 to obtain homogenous slurry and then inoculated with 2ml of prepared Acremonium butyri solution and incubated at room temperature for up to 3 weeks with frequent shaking at certain intervals. Reducing sugar test was carried out to determine the reducing sugar released with UV-VIS spectrophotometer. The results obtained indicate that rice husk contained 32%, 30%, 29% and 8.4% of cellulose, hemicelluloses, extractives and lignin respectively. And a total of 0.936g/l of reducing sugar was released after 3 weeks of pre-treatment. The results implies that Acremonium butyri separated the component of rice husk (pre-treatment) as well as break down cellulose and hemicelluloses into its monomers (hydrolysis) thereby releasing sugar. Hence, Acremonium butyri is a good microorganism for biological pre-tretment and hydrolysis. Keywords: Acremonium butyri, Rice Husk, Pre-treatment, Hydrolysis, Biofuel


2020 ◽  
pp. 6-11
Author(s):  
TU VY THUY NGUYEN ◽  
YUWALEE UNPAPROM ◽  
PIYAPAT CHAICHOMPOO ◽  
RAMESHPRABU RAMARAJ

Pretreatment is a vital step in the enzymatic hydrolysis of biomass and the successive production of bioethanol. The present study is focused on thermal pretreatment (boiling & autoclave) methods of low grade and damaged longan fruits using three different types of the enzymatic sources from commercial cellulase, an enzyme from algae and mixed enzymes (i.e., commercial cellulase with algal enzyme). Total sugar production after the hydrolysis process from commercial cellulase, the enzyme from algae and mixed enzymes were 326.41 ± 08.97 g/L, 348.68 ± 01.95 g/L and 368.42 ± 01.16 g/L, respectively. Reducing sugar after the hydrolysis process generated from commercial cellulase, the enzyme from algae and mixed enzymes was 182.54 ± 03.05 g/L, 183.33 ± 04.70 g/L and 297.78 ± 02.94 g/L, respectively. Fermentation of these hydrolysate using Saccharomyces cerevisiae TISTR 5020 produced the highest ethanol production from using commercial cellulase, the enzyme from algae and mixed enzymes was 16.74 ± 0.62 g/L, 5.38 ± 0.54 g/L and 14.32 ± 1.89 g/L, respectively. Consequently, this study suggested that suitable pretreatment and hydrolysis processes are performing a significant role in bioethanol production from low grade and damaged longan fruits.


Sign in / Sign up

Export Citation Format

Share Document