scholarly journals Pretreatment of Starch-Free Sugar Palm Trunk (Arenga pinnata) to Enhance Saccharification in Bioethanol Production

2018 ◽  
Vol 156 ◽  
pp. 01003 ◽  
Author(s):  
Kusmiyati ◽  
Duwi Maryanto ◽  
Ringga Sonifa ◽  
Sabda Aji Kurniawan ◽  
H. Hadiyanto

Starch-Free Sugar Palm Trunk (Arenga pinnata) can be utilized to produce bioethanol because of their high lignocellulosic contents. Production of bioethanol from lignocellulosic materials consist of pre-treatment, saccharification and fermentation processes. In this work, conversion of starch-free sugar palm trunk (Arenga pinnata) to fermentable sugar and bioethanol was carried out through g pretreatment, saccharification and fermentation processes. The pretreatment was carried out by addition of 1% (v/v) HNO3 and NH4OH for 30 min and 60 min, respectively. The saccharification was carried out at enzyme celullase loadings of 10 and 20 FPU/g and substrate loadings of 10 and 20 g for NH4OH pretreated samples. Fermentation was carried out using two methods i.e. separated hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) techniques. The results showed that pretreatment using NH4OH was more effective than HNO3 for 60 minutes. IFurthermore, the results also presented the reduction of the lignin content of 9.44% and the increase of cellulose content to 18.56% for 1% (v/v) NH4OH 60 min of pretreatment. The increase of enzyme cellulase (20 FPU/g substrate) and substrate loading (20 g) could produce more reducing sugar (17.423 g/L and 19.233 g/L) than that at 10 FPU/g substrate and 10 g substrate (11.423 g/L and 17.423 g/L), respectively. The comparison of SHF and SSF showed that SHF process yielded higher ethanol (8.11 g/L) as compared to SSF (3.95 g/L) and nontreatment process (0.507 g/L) for 72 h..

Author(s):  
Andi Hakim ◽  
Ekowati Chasanah ◽  
Uju Uju ◽  
Joko Santoso

Seaweed processing waste has been used for bioethanol production through simultaneous saccharification and fermentation (SSF). SSF is commonly used for bioethanol production to shorten the process and to increase the yield of ethanol produced by Trichoderma reesei and Saccharomyces cerevisiae. The aim of this research was to obtain the best concentration of T. reesei and S. cerevisiae to produce bioethanol by SSF. The concentration of T. reesei and S. cerevisiae used was 0 (control), 5, 10, 15 and 20% (v/v). The SSF process was carried out by using shaking incubator at 35 °C and rotation of 150 rpm for 3 days. The untreated and hot water treated seaweed processing waste used in this study have moisture content values of 12.94±0.08% and 15.38±0.19%, ash content values of 16.72±0.08% and 18.39±0.19%, lignin content values of 15.38±0.11% and 12.74±0.38%, and cellulose content values of 26.92±0.57% and 34.57±0.81%, respectively. The result of SSF process of seaweed processing waste showed that different concentrations of T. reesei and S. cerevisiae (control, 5, 10, 15 and 20%) yielded significant effect (p<0.05) on the total reducing sugars and ethanol produced. The Duncan Multiple Range Test (DMRT) showed that the treatment 10% of T. reesei and S. cerevisiae concentration in the seaweed processing waste treated with hot water was the best treatment producing highest yield of ethanol.


2018 ◽  
Vol 154 ◽  
pp. 01035 ◽  
Author(s):  
Kusmiyati ◽  
Ryzka Pratiwi Sukmaningtyas

Development of alternative energy is needed to solve the energy problem, including bioethanol. Banana pseudo-stem is a lignocellulose material that can used to produce bioethanol. Banana pseudo-stem has 28.83% cellulose and 19.39% lignin. The amount of lignin will reduce by pretreatment process. Variations of pretreatment methods by autoclaving of banana-pseudo stem in a steam, 0.5N, 1N, 1.5N, 2N NaOH solutions for 90 minutes were employed. Then the preteated samples were further enzymatic hydrolysed for 24, 48, 72 hours. The fermentation method of simultaneous saccharification and fermentation (SSF) was applied using cellulase enzyme and yeast of Saccharomyces cerevisiae for 120 hours. The variation of the pretreatment process by increasing of NaOH concentration solutions led to decreased the lignin content while increased in cellulose content. The lowest lignin content was 11.44% and the highest cellulose was 51.66%. The highest sugar content was 29.8 g/L (at pretreatment 2N NaOH solution, 72 hours hydrolysis). The highest bioethanol amount (4.32 g/L) was produced from pretreated banana stem using 2N NaOH solution.


PERENNIAL ◽  
2012 ◽  
Vol 8 (1) ◽  
pp. 43 ◽  
Author(s):  
Muhammad Daud ◽  
Wasrin Safii ◽  
Khaswar Syamsu

This study aims to determine the feseability of bioethanol production from lignocellulosic material by using simulataneous saccharification and fermentation (SSF) processes with Aspergillus niger dan Saccharomyces cereviciae. Three different lignocellulosic materials namely sengon wood (Paraserianthes falcataria), gmelina wood (Gmelina arborea), pinus wood and (Pinus merkusii) were pretreated using kraft process to remove lignin content. Then, pulp was treated by using SSF processes. SSF runs were performed in 500 ml fermentors using a total slurry 200 ml. The substrate and nutrient media were autoclaved (121 oC and 20 minutes). The samples diluted to 2.5 % (w v-1) of total slurry was used as substrate. The substrate was added with 10 % (v v-1) A. niger (6.5 x 107 CFU cc-1) of total slurry and then inoculated with 10 % (v v-1) yeast S. cereviciae (1.5 x 109 CFU cc-1). The SSF experiments were run for 96 hours and the data were investigated periodically every 24 hours. The results showed that total of sugar and reducing sugar tended to decrease with time of inoculation whereas ethanol concentration increase significantly. The growth of A. niger and yeast S. cereviciae tended to incease in initial inoculation and decrease by the end of inoculation. The bioethanol concentration on sengon, gmelina, and pinus were 0.53, 0.45 and 0.31 % respectively and produced yields 3.61, 4.60 and 4.16% respectively. Key words: bioethanol, simultaneous saccharification and fermentation, Aspergillus niger, Saccharomyces cereviciae


2016 ◽  
Vol 27 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Elsa Cherian ◽  
M. Dharmendira Kumar ◽  
G. Baskar

Purpose – The purpose of this paper is to optimize production of cellulase enzyme from agricultural waste by using Aspergillus fumigatus JCF. The study also aims at the production of bioethanol using cellulase and yeast. Design/methodology/approach – Cellulase production was carried out using modified Mandel’s medium. The optimization of the cellulase production was carried out using Plackett-Burman and Response surface methodology. Bioethanol production was carried out using simultaneous saccharification and fermentation. Findings – Maximum cellulase production at optimized conditions was found to be 2.08 IU/ml. Cellulase was used for the saccharification of three different feed stocks, i.e. sugar cane leaves, corn cob and water hyacinth. Highest amount of reducing sugar was released was 29.1 gm/l from sugarcane leaves. Sugarcane leaves produced maximum bioethanol concentration of 9.43 g/l out of the three substrates studied for bioethanol production. Originality/value – The present study reveals that by using the agricultural wastes, cellulase production can be economically increased thereby bioethanol production.


2020 ◽  
Vol 21 (5) ◽  
Author(s):  
WHINY HARDIYATI ERLIANA ◽  
Tri Widjaja ◽  
ALI ALTWAY ◽  
LILY PUDJIASTUTI

Abstract. Erliana WH, Widjaja T, Altway A, Pudjiastuti L. 2020. Synthesis of lactic acid from sugar palm trunk waste (Arenga pinnata): Hydrolysis and fermentation studies. Biodiversitas 21: 2281-2288. The increasing problems of global energy and the environment are the main reasons for developing products with new techniques through green methods. Sugar palm trunk waste (SPTW) has potential as agricultural waste because of its abundant availability, but it is not used optimally. This study was aimed to determine the effect of various microorganisms on increasing lactic acid production by controlling pH and temperature conditions in the fermentation process. SPTW contains 43.88% cellulose, 7.24% hemicellulose, and 33.24% lignin. The lignin content in SPTW can inhibit reducing sugar formation; the pretreatment process should remove this content. In the study, the pretreatment process was conducted using acid-organosolv. In the acid pretreatment, 0.2 M H2SO4 was added at 120oC for 40 minutes; organosolv pretreatment using 30% ethanol (v/v) at 107oC for 33 minutes was able to increase cellulose content by 56.33% and decrease lignin content by 27.09%. The pretreatment was followed by an enzymatic hydrolysis process with a combination of commercial cellulase enzymes from Aspergillus niger (AN) and Trichoderma reesei (TR), with variations of 0:1, 1:0, 1:1, 1:2 and 2:1. The best reducing sugar concentration was obtained with an AN: TR ratio of 1:2 to form reducing sugar from cellulose. Subsequently, lactic acid fermentation was carried out using lactic acid bacteria at 37oC and pH 6 incubated for 48 hours. The highest lactic acid concentration (33.292 g/L) was obtained using a mixed culture of Lactobacillus rhamnosus and Lactobacillus brevis to convert reducing sugar become lactic acid.


Proceedings ◽  
2020 ◽  
Vol 57 (1) ◽  
pp. 16
Author(s):  
Valentin Zamfiropol-Cristea ◽  
Lucian Vlădulescu ◽  
Diana Constantinescu-Aruxandei ◽  
Florin Oancea

A small scale biorefinery process, which includes two main steps: (1) biomass pre-treatment with natural deep eutectic solvents (NADES) and feruloyl-esterase (FAE); and (2) one pot production of a versatile chemical, 2,3 butanediol (2,3-BD), from NADES and FAE pre-treated lignocellulose biomass, by simultaneous saccharification and fermentation (SSF), performed by a plant biostimulant microbial consortia, was developed. [...]


BioResources ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. 853-866
Author(s):  
Chun-Han Ko ◽  
Fang-Jing Chen ◽  
Wan-Jyung Liao ◽  
Tzenge-Lien Shih

Crude recombinant Paenibacillus endoglucanase was employed to investigate its ability to gain access into and to degrade spruce pulps having different lignin and pentosan contents. Since yeast extract is commonly present in the simultaneous saccharification and fermentation processes as a nitrogen source, its effect on the accessibility and degradability of crude endoglucanase was examined. Pulps with more lignin contents adsorbed more overall proteins. More protein impurities other than the recombinant Paenibacillus endoglucanase were found to be preferentially adsorbed on the surfaces of pulp with higher lignin contents. The addition of yeast extracts further enhanced the above trends, which might reduce the non-productive binding by pulp lignin. Pulps with more lignin contents were more difficult to be degraded by the crude endoglucanase; the reductions of degree of polymerization (DP) for pulps were more sensitive to the dosage of endoglucanase applied. The presence of yeast extracts increased the DP degradation rate constants, but decreased the release of reducing sugars during hydrolysis for pulp with higher lignin contents.


Author(s):  
Olotu Emmanuel Juwon ◽  
Olukunle Folake Oluwatoyin

This study evaluated the ability of cassava peels, banana peels, orange peels and corn cobs hydrolysates to produce bioethanol. Fibre fractions analysis was carried out using standard methods. The samples were pre-treated with acid and base, followed by simultaneous saccharification and fermentation (SSF) for bioethanol production. During fermentation, pH, total titratable acidity, reducing sugar, microbial load and bioethanol yield were determined. The reducing sugar yield for Aspergillus niger and Bacillus cereus were 30.28 g and 13.35 g for corn cobs. The pH was observed to decrease during fermentation period with orange peels having the lowest pH of 2.6 after 240 hours of fermentation using A. Niger and S. cerevisiae, when B. cereus and S. Cerevisiae were used the pH was observed to be 4.10.  Total titratable acidity showed increase in all the substrates, with corn cobs having the highest when B. cereus and S. cerevisiae were used (1.62), followed by cassava peels when A. niger and S. cerevisiae were used (1.52). Highest ethanol yield following simultaneous saccharification and fermentation with A. niger and S. cerevisiae was obtained in corn cobs with 17.43 g/100 g, while orange peels gave the lowest with 8.02 g/100 g, the ethanol yield from each substrates as well as the combined substrates were significantly different at p≤ 0.05. The combined substrates (1:1:1:1) gave the highest ethanol yield of 12.44 g/100 g using A. niger and S. cerevisiae.  This study therefore revealed that A. niger had the highest bioethanol yield using corn cobs as the carbon source, therefore it could be used for mass bioethanol production.


2020 ◽  
Author(s):  
Vishnu Prasad J. ◽  
Tridweep K. Sahoo ◽  
Naveen S. ◽  
Guhan Jayaraman

Abstract BackgroundSimultaneous saccharification and fermentation (SSF) of pre-treated lignocellulosics to biofuels and other platform chemicals has long been a promising alternative to separate hydrolysis and fermentation processes. However, the disparity between the optimum conditions (temperature, pH) for fermentation and enzyme hydrolysis leads to execution of the SSF process at sub-optimal conditions, which can affect the rate of hydrolysis and cellulose conversion. The fermentation conditions could be synchronized with hydrolysis optima by carrying out the SSF at a higher temperature, but this would require a thermo-tolerant organism. Economically viable production of platform chemicals from lignocellulosic biomass (LCB) has long been stymied because of the significantly higher cost of hydrolytic enzymes. The major objective of this work is to develop an SSF strategy for D- lactic acid production by a thermo-tolerant organism, in which the enzyme loading could significantly be reduced without compromising on the overall conversion.ResultsA thermo-tolerant strain of Lactobacillus bulgaricus was developed by adaptive laboratory evolution (ALE) which enabled the SSF to be performed at 45 °C with reduced enzyme usage. Despite the reduction of enzyme loading from 15 Filter Paper Unit/ gLCB (FPU/gLCB) to 5 FPU/gLCB, we could still achieve ~8% higher cellulose to D-Lactic acid (D-LA) conversion in batch SSF, in comparison to the conversion by separate enzymatic hydrolysis and fermentation processes at 45 °C and pH 5.5. Extending the batch SSF to SSF with pulse-feeding of 5% pre-treated biomass and 5 FPU/gLCB, at 12-hour intervals (36th h – 96th h), resulted in a titer of 108 g/L D-LA and 60% conversion of cellulose to D-LA. This is one among the highest reported D-LA titers achieved from LCB.ConclusionsWe have demonstrated that the SSF strategy, in conjunction with evolutionary engineering, could drastically reduce enzyme requirement and be the way forward for economical production of platform chemicals from lignocellulosics. We have shown that fed-batch SSF processes, designed with multiple pulse-feedings of the pre-treated biomass and enzyme, can be an effective way of enhancing the product concentrations.


Sign in / Sign up

Export Citation Format

Share Document