Determination of IPCC Landfill Gas Generation Model Parameters using Iterative Non-linear Least Square Method

2019 ◽  
Vol 36 (03) ◽  
pp. 308-320
Author(s):  
Jin-Kyu Park ◽  
Ran-Hui Kim ◽  
Nam-Hoon Lee
Kanzo ◽  
1988 ◽  
Vol 29 (10) ◽  
pp. 1368-1373
Author(s):  
Yutaka SAGAWA ◽  
Toshiko YOSHIKATA ◽  
Nagaki SHIMADA ◽  
Motonobu SUGIMOTO

Author(s):  
C. Li ◽  
C. Chen ◽  
Z. Guo ◽  
Q. Liu

The Rational Function Model (RFM) is a non-linear model. Usually, the RFM-based satellite image block adjustment uses the Taylor series to expand error equations, and then solves the linear model. Theoretically, linearization of a non-linear model affects the accuracy and reliability of the adjustment result. This paper presents linear and non-linear methods for solving the RFM-based block adjustment,and takes ZiYuan3 (ZY-3) satellite imagery block adjustment as an example, using same check points to assess the accuracy of the two methods. In this paper, a non-linear least square method is used for solving the RFM-based block adjustment, which expands a solution to the block adjustment.


2005 ◽  
Vol 297-300 ◽  
pp. 2187-2194
Author(s):  
Jai Sug Hawong ◽  
Konstantin Teche

In photoelastic experimental method, until now, we have used the Newton-Raphson numerical method in analysis of photoelastic experimental data such as the non-linear least square method for the photoelastic expreriment. We used the Hook-Jeeves’ numerical method in stead of Newton-Raphson numerical method for the non-linear least square method for photoelastic experimental method. The new photoelastic experimental hybrid method, that is, the photoelastic experimental hybrid method with Hook-Jeeves’ numerical method has been developed in this research. Applying the new photoelastic experimental hybrid method to stress concentration problems and plane fracture problems, it’s validity was assured. The new photoelastic experimental hybrid method is more precise and stabler than the photoelastic experimental hybrid method with Newton- Raphson numerical method (the old photoelastic experimental hybrid method)


Author(s):  
Mongkorn Klingajay ◽  
Wuttipong Wanathap

Threaded fastenings are a common assembly method, accounting for over a quarter of all assembly operations. They are especially popular because they permit easy disassembly for maintenance, repair, relocation and recycling. Screw insertions are typically carried out manually as it is a difficult operation to automate. There is very little published research on automating threaded fastenings, and most research on automated assembly focuses on the peg-in-hole assembly problem. Non-linear least square method was designed and employed to identify torque signature signals during online threaded fastening. Creating interactive simulations and graphical user interfaces became necessary as a visualization aid. This provides help and support for the user, allowing them to concentrate on the concept they are illustrating and to put emphasis on the monitoring process rather than the mechanics of running the program. This paper presents a Graphical User Interface (GUI) tool to accommodate and support threaded fastening operations used in assembly line industries. This tool was produced as interactive software with a convenient GUI in combination with the computing and graphics capability of MATLAB. It has applied to automated monitoring of threaded fastenings based-on an analytical model and on-line parameter estimation. The monitoring problem deals with predicting the integrity of the screw insertion process based on the torque vs. insertion angle curves generated during the insertions. A Non-linear Least Square Method (NLSM) is applied for estimation of four unknown parameters during a self-tapping screw insertion to be presented. It is shown that these parameters, required by the model, can be reliably estimated on-line. Experimental results are presented to validate the estimation procedure.


2021 ◽  
Vol 13 (3) ◽  
pp. 1462
Author(s):  
Faisal A. Osra ◽  
Huseyin Kurtulus Ozcan ◽  
Jaber S. Alzahrani ◽  
Mohammad S. Alsoufi

In many countries, open dumping is considered the simplest, cheapest, and most cost-effective way of managing solid wastes. Thus, in underdeveloped economies, Municipal Solid Wastes (MSW) are openly dumped. Improper waste disposal causes air, water, and soil pollution, impairing soil permeability and blockage of the drainage system. Solid Waste Management (SWM) can be enhanced by operating a well-engineered site with the capacity to reduce, reuse, and recover MSW. Makkah city is one of the holiest cities in the world. It harbors a dozen of holy places. Millions of people across the globe visit the place every year to perform Hajj, Umrah, and tourism. In the present study, MSW characterization and energy recovery from MSW of Makkah was determined. The average composition of solid waste in Makkah city is organic matter (48%), plastics (25%), paper and cardboard (20%), metals (4%), glass (2%), textiles (1%), and wood (1%). In order to evaluate energy recovery potential from solid waste in Kakia open dumpsite landfill, the Gas Generation Model (LandGEM) was used. According to LandGEM results, landfill gas (methane and carbon dioxide) generation potential and capacity were determined. Kakia open dump has a methane potential of 83.52 m3 per ton of waste.


Author(s):  
Kentaro Miyago ◽  
Kenyu Uehara ◽  
Takashi Saito

Recently, traffic accidents due to drowsy driving, operation mistake in the power plant by drowsiness and decrease arousal in employment during work have been attracted as problems. To avoid such an accident, arousal level could be quantitatively evaluated in real time. We suggested that the one of the parameters of Duffing oscillator parameters is related to the conventional arousal level using the EEG frequency component. However, in this examination, effects on the EEG from visual and active behavior were considered, but those from hearing also need to be investigated. In this paper, we performed the experiment in the musical environment using rock and classic music to investigate the model parameters for effect of the auditory stimulation, and acquired EEG data in Visual cortex and Frontal lobe. The acquired EEG data was used to identify the model parameters, which were identified solving the inverse problem by Least Square method. Results of investigating correlation between conventional arousal revel and model parameter shows a significant correlation in case of the auditory environmental situation. Moreover, Visual cortex is better than Frontal lobe as a measurement point in this evaluation method.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wenxian Duan ◽  
Chuanxue Song ◽  
Yuan Chen ◽  
Feng Xiao ◽  
Silun Peng ◽  
...  

An accurate state of charge (SOC) can provide effective judgment for the BMS, which is conducive for prolonging battery life and protecting the working state of the entire battery pack. In this study, the first-order RC battery model is used as the research object and two parameter identification methods based on the least square method (RLS) are analyzed and discussed in detail. The simulation results show that the model parameters identified under the Federal Urban Driving Schedule (HPPC) condition are not suitable for the Federal Urban Driving Schedule (FUDS) condition. The parameters of the model are not universal through the HPPC condition. A multitimescale prediction model is also proposed to estimate the SOC of the battery. That is, the extended Kalman filter (EKF) is adopted to update the model parameters and the adaptive unscented Kalman filter (AUKF) is used to predict the battery SOC. The experimental results at different temperatures show that the EKF-AUKF method is superior to other methods. The algorithm is simulated and verified under different initial SOC errors. In the whole FUDS operating condition, the RSME of the SOC is within 1%, and that of the voltage is within 0.01 V. It indicates that the proposed algorithm can obtain accurate estimation results and has strong robustness. Moreover, the simulation results after adding noise errors to the current and voltage values reveal that the algorithm can eliminate the sensor accuracy effect to a certain extent.


Sign in / Sign up

Export Citation Format

Share Document