scholarly journals Modification of Starch Composition Using RNAi Targeting Soluble Starch Synthase I in Japonica Rice

2014 ◽  
Vol 2 (3) ◽  
pp. 301-312 ◽  
Author(s):  
Hye Jung Lee ◽  
Moo-Geun Jee ◽  
Joonki Kim ◽  
Franz M.C. Nogoy ◽  
Marjohn C. Ni?o ◽  
...  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Shu Yao ◽  
Yadong Zhang ◽  
Yanqing Liu ◽  
Chunfang Zhao ◽  
Lihui Zhou ◽  
...  

Abstract The purpose of this study is to reveal the genetic mechanism of the variation of amylose content among different semi waxy or glutinous japonica rice in the background of Wxmp gene. Sixty-four semi waxy lines derived from the hybrid progenies of Wujing 13 and Milky Princess (Kantou 194) with polymorphism in soluble starch synthase gene SSIIa (SSII-3) and SSIIIa (SSIII-2) but no polymorphism in other starch synthase related genes were used as test materials. The genotypes of SSIIa and SSIIIa allele were identified by molecular markers, and the allelic effects of SSIIa and SSIIIa gene on amylose content (AC), gel consistency (GC), gelatinization temperature (GT) and rapid visco analyzer (RVA) profile characteristics were analyzed. The significant effects of SSIIa and SSIIIa alleles and the interactive effects between two genes on AC, GT, GC and RVA profile characteristics were found. The SSIIa and SSIIIa alleles from Wujing13 shown positive effects on AC with an average increase of 1.87 and 1.23% in 2 years respectively. There was no significant effect on GT for SSIIa or SSIIIa allele but remarkable influence on GT when the co-existence of the two genes. The genotype SSIIampSSIIIamp shown 1.34 °C higher GT than genotype SSIIawjSSIIIawj (mp and wj indicated that the gene was derived from Milky Princess and Wujing 13 respectively, the same as in the below). Different genes and alleles resulted in significant different GC. The genetic effect of SSIIawj and SSIIIamp on GC was 8.74 and 9.62 mm respectively. The GC of SSIIawjSSIIIamp was 10.64 and 16.95 mm higher than that of SSIIampSSIIIawj and SSIIawjSSIIIawj, respectively. The allele SSIIawj could increase the peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV) and breakdown viscosity (BDV), while decrease the consistency viscosity (CSV) and setback viscosity (SBV). However for the allele SSIIIawj the opposite was true. The genotype SSIIawjSSIIIamp had the largest PKV, HPV and CPV, the genotype SSIIawjSSIIIawj had the largest BDV and CSV, but the genotype SSIIawjSSIIIamp had the least SBV. According to the comprehensive effect of each trait, the genotype SSIIawjSSIIIamp was the best. The allelic variation and interaction effect of SSIIa and SSIIIa genes have important reference value for improving cooking and eating quality of semi waxy japonica rice.


2020 ◽  
Vol 11 ◽  
Author(s):  
Vito M. Butardo Jr. ◽  
Jixun Luo ◽  
Zhongyi Li ◽  
Michael J. Gidley ◽  
Anthony R. Bird ◽  
...  

1994 ◽  
Vol 269 (40) ◽  
pp. 25150-25157
Author(s):  
M.L. Maddelein ◽  
N. Libessart ◽  
F. Bellanger ◽  
B. Delrue ◽  
C. D'Hulst ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Siwaret Arikit ◽  
Samart Wanchana ◽  
Srisawat Khanthong ◽  
Chatree Saensuk ◽  
Tripop Thianthavon ◽  
...  

1995 ◽  
Vol 108 (2) ◽  
pp. 677-683 ◽  
Author(s):  
Ki. Tanaka ◽  
S. Ohnishi ◽  
N. Kishimoto ◽  
T. Kawasaki ◽  
T. Baba

2018 ◽  
Vol 54 (3) ◽  
pp. 216-227 ◽  
Author(s):  
Bin Tian ◽  
Shyamal K. Talukder ◽  
Jianming Fu ◽  
Allan K. Fritz ◽  
Harold N. Trick

1995 ◽  
Vol 22 (4) ◽  
pp. 703 ◽  
Author(s):  
CF Jenner ◽  
K Denyer ◽  
J Guerin

The aim of the work reported in this paper was to characterise the thermal responses of soluble starch synthase (SSS) extracted from the endosperm of the developing wheat grain. Using partially purified preparations of SSS, the reaction obeyed Michaelis-Menten kinetics with both substrates amylopectin and ADPglucose. Both the Vmax and the Km varied with temperature. Values for Vmax were higher at 45�C compared with 25�C. However, the Km values for both substrates were also higher at 45�C than at 25�C indicating that the affinity of the enzyme for its substrates was reduced at the higher temperature. Over the temperature range 15-45�C, the Km for arnylopectin was minimal at 20�C, and rose exponentially between 25 and 45�C. Kinetic analyses indicated that the reaction was sequential and that the substrates could bind to the enzyme in either order. At 25�C the binding of one substrate to the enzyme increased the affinity of the complex for the second substrate but at 45�C these effects were abolished. These thermal characteristics of SSS could explain certain important features of the temperature responses of starch deposition in the wheat grain in vivo.


Sign in / Sign up

Export Citation Format

Share Document