scholarly journals Perception of and adaptation to climate change by farmers in the semi-arid zone of North-eastern Nigeria

Author(s):  
Bose, M.M ◽  
Mousaion ◽  
2016 ◽  
Vol 33 (3) ◽  
pp. 1-24
Author(s):  
Emmanuel Elia ◽  
Stephen Mutula ◽  
Christine Stilwell

This study was part of broader PhD research which investigated how access to, and use of, information enhances adaptation to climate change and variability in the agricultural sector in semi-arid Central Tanzania. The research was carried out in two villages using Rogers’ Diffusion of Innovations theory and model to assess the dissemination of this information and its use by farmers in their adaptation of their farming practices to climate change and variability. This predominantly qualitative study employed a post-positivist paradigm. Some elements of a quantitative approach were also deployed in the data collection and analysis. The principal data collection methods were interviews and focus group discussions. The study population comprised farmers, agricultural extension officers and the Climate Change Adaptation in Africa project manager. Qualitative data were subjected to content analysis whereas quantitative data were analysed to generate mostly descriptive statistics using SPSS.  Key findings of the study show that farmers perceive a problem in the dissemination and use of climate information for agricultural development. They found access to agricultural inputs to be expensive, unreliable and untimely. To mitigate the adverse effects of climate change and variability on farming effectively, the study recommends the repackaging of current and accurate information on climate change and variability, farmer education and training, and collaboration between researchers, meteorology experts, and extension officers and farmers. Moreover, a clear policy framework for disseminating information related to climate change and variability is required.


2021 ◽  
Author(s):  
Musa Yusuf Jimoh ◽  
Peter Bikam ◽  
Hector Chikoore ◽  
James Chakwizira ◽  
Emaculate Ingwani

New climate change realities are no longer a doubtful phenomenon, but realities to adapt and live with. Its cogent impacts and implications’ dispositions pervade all sectors and geographic scales, making no sector or geographic area immune, nor any human endeavor spared from the associated adversities. The consequences of this emerging climate order are already manifesting, with narratives written beyond the alterations in temperature and precipitation, particularly in urban areas of semi-arid region of South Africa. The need to better understand and respond to the new climate change realities is particularly acute in this region. Thus, this chapter highlights the concept of adaptation as a fundamental component of managing climate change vulnerability, through identifying and providing insight in respect of some available climate change adaptation models and how these models fit within the premises and programmes of sustainable adaptation in semi-arid region with gaps identification. The efforts of governments within the global context are examined with households’ individual adaptation strategies to climate change hazards in Mopani District. The factors hindering the success of sustainable urban climate change adaptation strategic framework and urban households’ adaptive systems are also subjects of debate and constitute the concluding remarks to the chapter.


Author(s):  
Andrew E. McKechnie

The direct impacts of higher temperatures on birds are manifested over timescales ranging from minutes and hours to years and decades. Over short timescales, acute exposure to high temperatures can lead to hyperthermia or dehydration, which among arid-zone species occasionally causes catastrophic mortality events. Over intermediate timescales of days to weeks, high temperatures can have chronic sub-lethal effects via body mass loss or reduced nestling growth rates, negatively affecting sev eral fitness components. Long-term effects of warming manifested over years to decades involve declining body mass or changes in appendage size. Key directions for future research include elucidating the role of phenotypic plasticity and epigenetic processes in avian adaptation to climate change, examining the role of stress pathways in mediating responses to heat events, and understanding the consequences of higher temperatures for species that traverse hot regions while migrating.


2020 ◽  
Vol 163 (3) ◽  
pp. 1247-1266 ◽  
Author(s):  
Hagen Koch ◽  
Ana Lígia Chaves Silva ◽  
Stefan Liersch ◽  
José Roberto Gonçalves de Azevedo ◽  
Fred Fokko Hattermann

AbstractSemi-arid regions are known for erratic precipitation patterns with significant effects on the hydrological cycle and water resources availability. High temporal and spatial variation in precipitation causes large variability in runoff over short durations. Due to low soil water storage capacity, base flow is often missing and rivers fall dry for long periods. Because of its climatic characteristics, the semi-arid north-eastern region of Brazil is prone to droughts. To counter these, reservoirs were built to ensure water supply during dry months. This paper describes problems and solutions when calibrating and validating the eco-hydrological model SWIM for semi-arid regions on the example of the Pajeú watershed in north-eastern Brazil. The model was calibrated to river discharge data before the year 1983, with no or little effects of water management, applying a simple and an enhanced approach. Uncertainties result mainly from the meteorological data and observed river discharges. After model calibration water management was included in the simulations. Observed and simulated reservoir volumes and river discharges are compared. The calibrated and validated models were used to simulate the impacts of climate change on hydrological processes and water resources management using data of two representative concentration pathways (RCP) and five earth system models (ESM). The differences in changes in natural and managed mean discharges are negligible (< 5%) under RCP8.5 but notable (> 5%) under RCP2.6 for the ESM ensemble mean. In semi-arid catchments, the enhanced approach should be preferred, because in addition to discharge, a second variable, here evapotranspiration, is considered for model validation.


2019 ◽  
Vol 11 (23) ◽  
pp. 6629
Author(s):  
Ping Zhu ◽  
Wei Cao ◽  
Lin Huang ◽  
Tong Xiao ◽  
Jun Zhai

Protected areas (PAs) provide refuges for threatened species and are considered to be the most important approach to biodiversity conservation. Besides climate change, increasing human population is the biggest threat to biodiversity and habitats in PAs. In this paper, the temporal and spatial variations of land cover changes (LCC), vegetation fraction (VFC), and net primary productivity (NPP) were studied to present the ecosystem dynamics of habitats in 6 different types of national nature reserves (NNRs) in 8 climate zones in China. Furthermore, we used Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light datasets and the human disturbance (HD) index estimated from LCC to quantify the living and developing human pressures within the NNRs in the period 2000–2013. The results showed that (1) the living human activities of NNRs increased apparently in the humid warm-temperate zone, Qinghai-Tibet Plateau, mid-temperate semi-arid zone, and mid-temperate humid zone, with the highest increase of nighttime light observed in inland wetlands; (2) the developing human activities in NNRs indicated by the HD index were higher in the humid warm-temperate zone and mid-temperate semi-arid zone as a result of increasing areas of agricultural and built activities, and lower in the sub-tropics due to improved conservation of forest ecosystems; (3) the relationship between HD and VFC suggests that ecosystems in most NNRs of south-subtropics, mid-temperate arid zone and Qinghai-Tibet Plateau were predominantly impacted by climate change. However, HDs were the prevalent factor of ecosystem dynamics in most NNRs of north-subtropics, mid-temperate semi-arid and humid zones.


2018 ◽  
Vol 9 (1) ◽  
pp. 36-50 ◽  
Author(s):  
Shuaib Lwasa

Climate change is affecting many rural resource-poor communities unequivocally with differing magnitude, severity and frequency of drought risk from one locale to another especially in Africa. At micro spatial scale of households and villages, climate change risk trends and hazards vary spatially, coupling with social, economic and locational conditions. This paper analyzes vulnerability and impacts of climate change from droughts and floods in a rural community with varied geographies across social, economic and environmental profiles in Uganda. In recent years, studies have shown that droughts have increased form 1 in 10 years to 1 in 6 years and the worst affected area is the semi-arid zone of Uganda that spans from south western through central parts to the north-eastern parts of the country. In the study area of Pallisa, located in the eastern central part of the semi-arid zone, droughts and floods impacts on livelihoods, people and assets are eroding the asset-base for the households. Yet the household assets are important in adaptation and resilience of the community. As a natural resource dependent community like many others, evidence strongly suggests increasing climate risks of droughts and floods the impacts of which are worsening the already grim conditions of community well-being. This paper analyses the climate risks utilizing the vulnerability assessment framework. A scenario-based analysis that integrates community evaluation of vulnerability with climate data to analyze current and future vulnerabilities in a spatial context is conducted to examine spatial differences in vulnerability. Various multi-scale adaptation strategies are analyzed in respect to the climate change risks to assess the resilient capacity of the community to current and future vulnerabilities.


2021 ◽  
Author(s):  
Mohammad Mohammadlou ◽  
Abdolreza Bahremand ◽  
Daniel Princz ◽  
Nicholas Kinar ◽  
Saman Razavi

Abstract The Global Environmental Multiscale Model (GEM) is an integrated forecasting and data assimilation system developed by Environment and Climate Change Canada. The model is currently in operational use for data assimilation and forecasting at global 25 km to 15 km scales; regional 10 km scales over North America; and 2.5 km scales over Canada. To demonstrate the performance of the GEM model for forecasting applications, global forecast outputs of GEM at the 25 km scale were compared to temperature and precipitation datasets collected over an area of 1,648,000 km2 especially representative of the country of Iran on a daily temporal scale. Using the De Martonne method for climate classification and data from 177 meteorological stations, the country of Iran was classified into three zones: an arid zone with 87 stations; a semi-arid zone with 63 stations; and a humid zone with 27 stations. GEM model outputs were compared to observations in each of these demarcated zones. The results show good agreement between modelled and measured daily temperatures with Kling-Gupta efficiencies of 0.76, 0.71 and 0.78 in arid, semi-arid and humid regions respectively, and a moderate agreement between modelled and measured annual precipitation with 50.06%, 35.6% and 15.38% differences in arid, semi-arid and humid regions, respectively. The results also indicate that there is a significant systematic error between the elevation of the stations and the average elevation of corresponding GEM grid cells (13%). The results provide an evaluation of the model performance for Iran to be utilized for climate change applications in a regional context and can serve as a basis for the development of future high-resolution GEM model versions on a global scale.


Sign in / Sign up

Export Citation Format

Share Document