scholarly journals A Suggested Method for Performance Evaluation of Large Scale Fireproof Shutters

2020 ◽  
Vol 20 (3) ◽  
pp. 111-116
Author(s):  
Youngje Woo

Currently, there is a limitation in the performance evaluation of a large fireproof shutter due to the constraint of the maximum size of the test equipment (3 m × 3 m). In particular, the longer the maximum span of a large fireproof shutter, the greater the fire load. Accordingly, the deformation of the large fireproof shutter is increased. The fire fragile area between the guide rails at both ends of the large fireproof shutter and the body of the fireproof shutter increases, and at the same time, the possibility of flame passing through the fragile area increases. However, the reduced-scale test is performed without reflecting the above-mentioned problems, and the maximum span of 8 m specified in KS F 4510 is widely used. Therefore, the author suggests a new method for performance evaluation of large-scale fireproof shutter, which can reflect the fire vulnerabilities of large fireproof shutter with increasing span.

2021 ◽  
pp. 073490412110371
Author(s):  
Johan Sarazin ◽  
Elsa Franchini ◽  
Virginie Dréan ◽  
Roman Chiva ◽  
Serge Bourbigot

This article addresses the development of a bench-scale test (jetfire lab) mimicking the fire exposure of the large-scale jetfire facility. An experimental approach was addressed to develop direct correlation and to validate the similitude between bench-scale test and large-scale jetfire. Comparisons were made by testing Zaltex passive fire protection material in the form of panels. Novel setups were designed to make the jetfire lab able to measure time/temperature curves similar to those obtained at a large scale. The assembly of the tested samples was also investigated. An experimental protocol was elaborated to consider the junction between parts of the sample at the reduced scale. Direct correlation was found between the large and the bench scale and it was evidenced that jetfire lab can be used for preliminary study and development of new thermal barriers for fire protection.


2020 ◽  
Author(s):  
Rui Sun ◽  
Disa Sauter

Getting old is generally seen as unappealing, yet aging confers considerable advantages in several psychological domains (North & Fiske, 2015). In particular, older adults are better off emotionally than younger adults, with aging associated with the so-called “age advantages,” that is, more positive and less negative emotional experiences (Carstensen et al., 2011). Although the age advantages are well established, it is less clear whether they occur under conditions of prolonged stress. In a recent study, Carstensen et al (2020) demonstrated that the age advantages persist during the COVID-19 pandemic, suggesting that older adults are able to utilise cognitive and behavioural strategies to ameliorate even sustained stress. Here, we build on Carstensen and colleagues’ work with two studies. In Study 1, we provide a large-scale test of the robustness of Carstensen and colleagues’ finding that older individuals experience more positive and less negative emotions during the COVID-19 pandemic. We measured positive and negative emotions along with age information in 23,629 participants in 63 countries in April-May 2020. In Study 2, we provide a comparison of the age advantages using representative samples collected before and during the COVID-19 pandemic. We demonstrate that older people experience less negative emotion than younger people during the prolonged stress of the COVID-19 pandemic. However, the advantage of older adults was diminished during the pandemic, pointing to a likely role of older adults use of situation selection strategies (Charles, 2010).


Author(s):  
Deborah Carr ◽  
Vera K. Tsenkova

The body weight of U.S. adults and children has risen markedly over the past three decades. The physical health consequences of obesity are widely documented, and emerging research from the Midlife in the United States study and other large-scale surveys reveals the harmful impact of obesity on adults’ psychosocial and interpersonal well-being. This chapter synthesizes recent research on the psychosocial implications of body weight, with attention to explanatory mechanisms and subgroup differences in these patterns. A brief statistical portrait of body weight is provided, documenting rates and correlates of obesity, with a focus on race, gender, and socioeconomic status disparities. The consequences of body weight for three main outcomes are described: institutional and everyday discrimination, interpersonal relationships, and psychological well-being. The chapter concludes with a discussion of the ways that recent integrative health research on the psychosocial consequences of overweight and obesity inform our understanding of population health.


1979 ◽  
Vol 6 (2) ◽  
pp. 70-72
Author(s):  
T. A. Coffelt ◽  
F. S. Wright ◽  
J. L. Steele

Abstract A new method of harvesting and curing breeder's seed peanuts in Virginia was initiated that would 1) reduce the labor requirements, 2) maintain a high level of germination, 3) maintain varietal purity at 100%, and 4) reduce the risk of frost damage. Three possible harvesting and curing methods were studied. The traditional stack-pole method satisfied the latter 3 objectives, but not the first. The windrow-combine method satisfied the first 2 objectives, but not the last 2. The direct harvesting method satisfied all four objectives. The experimental equipment and curing procedures for direct harvesting had been developed but not tested on a large scale for seed harvesting. This method has been used in Virginia to produce breeder's seed of 3 peanut varieties (Florigiant, VA 72R and VA 61R) during five years. Compared to the stackpole method, labor requirements have been reduced, satisfactory levels of germination and varietal purity have been obtained, and the risk of frost damage has been minimized.


2021 ◽  
Vol 13 (4) ◽  
pp. 544
Author(s):  
Guohao Zhang ◽  
Bing Xu ◽  
Hoi-Fung Ng ◽  
Li-Ta Hsu

Accurate localization of road agents (GNSS receivers) is the basis of intelligent transportation systems, which is still difficult to achieve for GNSS positioning in urban areas due to the signal interferences from buildings. Various collaborative positioning techniques were recently developed to improve the positioning performance by the aid from neighboring agents. However, it is still challenging to study their performances comprehensively. The GNSS measurement error behavior is complicated in urban areas and unable to be represented by naive models. On the other hand, real experiments requiring numbers of devices are difficult to conduct, especially for a large-scale test. Therefore, a GNSS realistic urban measurement simulator is developed to provide measurements for collaborative positioning studies. The proposed simulator employs a ray-tracing technique searching for all possible interferences in the urban area. Then, it categorizes them into direct, reflected, diffracted, and multipath signal to simulate the pseudorange, C/N0, and Doppler shift measurements correspondingly. The performance of the proposed simulator is validated through real experimental comparisons with different scenarios based on commercial-grade receivers. The proposed simulator is also applied with different positioning algorithms, which verifies it is sophisticated enough for the collaborative positioning studies in the urban area.


2019 ◽  
Vol 35 (14) ◽  
pp. i417-i426 ◽  
Author(s):  
Erin K Molloy ◽  
Tandy Warnow

Abstract Motivation At RECOMB-CG 2018, we presented NJMerge and showed that it could be used within a divide-and-conquer framework to scale computationally intensive methods for species tree estimation to larger datasets. However, NJMerge has two significant limitations: it can fail to return a tree and, when used within the proposed divide-and-conquer framework, has O(n5) running time for datasets with n species. Results Here we present a new method called ‘TreeMerge’ that improves on NJMerge in two ways: it is guaranteed to return a tree and it has dramatically faster running time within the same divide-and-conquer framework—only O(n2) time. We use a simulation study to evaluate TreeMerge in the context of multi-locus species tree estimation with two leading methods, ASTRAL-III and RAxML. We find that the divide-and-conquer framework using TreeMerge has a minor impact on species tree accuracy, dramatically reduces running time, and enables both ASTRAL-III and RAxML to complete on datasets (that they would otherwise fail on), when given 64 GB of memory and 48 h maximum running time. Thus, TreeMerge is a step toward a larger vision of enabling researchers with limited computational resources to perform large-scale species tree estimation, which we call Phylogenomics for All. Availability and implementation TreeMerge is publicly available on Github (http://github.com/ekmolloy/treemerge). Supplementary information Supplementary data are available at Bioinformatics online.


2010 ◽  
Vol 36 ◽  
pp. 293-296
Author(s):  
Yoshio Kurosawa ◽  
Takao Yamaguchi

We have developed a technique for estimating vibrations of an automotive body structures with viscoelastic damping materials using large-scale finite element (FE) model, which will enable us to grasp and to reduce high-frequency road noise(200~500Hz). In the new technique, first order solutions for modal loss factors are derived applying asymptotic method. This method saves calculation time to estimate modal damping as a practical tool in the design stages of the body structures. Frequency responses were calculated using this technique and the results almost agreed with the test results. This technique can show the effect of the viscoelastic damping materials on the automotive body panels, and it enables the more efficient layout of the viscoelastic damping materials. Further, we clarified damping properties of the automotive body structures under coupled vibration between frames and panels with the viscoelastic damping materials.


Sign in / Sign up

Export Citation Format

Share Document