scholarly journals A Study on Microzonation of Sejong City Area by Site Amplification Caused by Gyeongju Type Earthquake

2020 ◽  
Vol 20 (6) ◽  
pp. 221-228
Author(s):  
JunSung Lee ◽  
HyungChoon Park ◽  
HyunJu Oh

When an earthquake occurs, ground amplification is caused by the soil. For the same earthquake, the magnitude of ground vibration experienced by buildings varies depending on the ground conditions. In this study, ground response analysis was performed for 120 locations in Sejong City, using Gyeongju earthquake waves, which reflect the characteristics of possible seismic waves in Korea. By creating a map using the Peak Ground Accelation (PGA) that the structure will experience and the ground natural period for each location, a map of the building type (building layer) that is likely to be earthquake-prone was determined based on the double resonance phenomenon, and the seismic hazard in the target area was assessed. The microzonation map based on the characteristics of these ground amplifications could be used for selecting the priority for inspection or the priority for anti-seismic reinforcement in the event of an earthquake.

Author(s):  
Mauro Aimar ◽  
Sebastiano Foti

ABSTRACT The possible amplification of seismic waves in soil deposits is crucial for the seismic design of buildings and geotechnical systems. The most common approaches for the numerical simulation of seismic site response are the equivalent linear (EQL) and the nonlinear (NL). Even though their advantages and limitations have been investigated in several studies, the relative field of applicability is still under debate. This study tested both methods over a wide population of soil models, which were subjected to a set of acceleration time histories recorded from strong earthquakes. A thorough comparison of the results of the EQL and the NL approaches was carried out, to identify the conditions in which the relative differences are significant. This assessment allowed for the definition of simplified criteria to predict when the two schemes are or are not compatible for large expected shaking levels. The proposed criteria are based on simple and intuitive parameters describing the soil deposit and the ground-motion parameters, which can be predicted straightforwardly. Therefore, this study provides a scheme for the choice between the EQL and the NL approaches that can be used even at the preliminary design stages. It appears that the EQL approach provides reliable amplification estimates in soil deposits with thickness up to 30 m, except for very deformable soils, but this depth range may be extended at long vibration periods. This result reveals a good level of reliability of the EQL approach for various soil conditions encountered in common applications, even for high-intensity shaking.


2020 ◽  
Vol 36 (1) ◽  
pp. 87-110 ◽  
Author(s):  
Youssef M. A. Hashash ◽  
Okan Ilhan ◽  
Behzad Hassani ◽  
Gail M. Atkinson ◽  
Joseph Harmon ◽  
...  

This article evaluates linear simulation-based and empirical site amplification models including site natural period dependency parameters to account for the distinctive amplification behavior near site fundamental frequencies resulting from the sharp impedance contrast between soil and underlying hard bedrock in central and eastern North America (CENA). The simulation-based amplification models are developed using 581,685 frequency-domain linear analyses generated from a parametric study and include VS30-scaling and site natural period ( Tnat) parameters. The empirical models are derived from residuals analyses of ground-motion models for two reference conditions: B/C boundary ( VS30 = 760 m/s) and CENA hard-rock condition ( VS = 3000 m/s). The simulation-based and empirical models are compared for 8 site profiles in CENA to measured horizontal-to-vertical (H/V) component response spectral (RS) ratios, the mean of linear simulations for similar sites, and one-dimensional (1D) linear site response analysis for four of these sites. Comparisons between observed and estimated site amplification behaviors highlight model dependency on Tnat in CENA. Model consistencies and differences related to the distinct linear amplification features near site fundamental frequency are discussed.


2021 ◽  
Vol 21 (1) ◽  
pp. 231-238
Author(s):  
Seokgyeong Hong ◽  
Jaehun Ahn

The importance of establishing a disaster prevention plan considering seismic performance is being highlighted to reduce damage to structures caused by earthquakes. Earthquake waves propagate from the bedrock to the ground surface through the soil. During the transmission process, they are amplified in a specific frequency range, and the degree of amplification depends mainly on the characteristics of the ground. Therefore, a seismic response analysis process is essential for enhancing the reliability of the seismic design. We propose a model for predicting seismic waves on the surface from seismic waves measured on the bedrock based on Multilayer Perceptron (MLP) and Convolutional Neural Networks (CNN) and validate the applicability of the proposed model with Spectral Acceleration (SA). Both the proposed models based on MLP and CNN successfully predicted the seismic response of the surface. The CNN-based model performed better than the MLP-based model, with a 10% smaller average error. We plan to implement the physical properties of the ground, such as shear wave velocity, to create a more versatile model in the future.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254871
Author(s):  
Tuo Chen

In this paper, considering the far-field seismic input, an accelerogram recorded in the bedrock at Wuquan Mountain in Lanzhou city during the 2008 Wenchuan Ms8.0 earthquake was selected, and numerical dynamic analyses were conducted. The one-dimensional equivalent linear method was implemented to estimate the ground motion effects in the loess regions. Thereafter, slope topographic effects on ground motion were studied by applying the dynamic finite-element method. The results revealed the relationship between the PGA amplification coefficients and the soil layer thickness, which confirmed that the dynamic response of the sites had obvious nonlinear characteristics. The results also showed that there was an obvious difference in the dynamic magnification factor between the short-period and long-period structures. Moreover, it was found that the amplification coefficient of the observation point at the free surface was greater than the point inside the soil at the same depth, which mainly occurred in the upper slope. Through this study, the quantitative assessment of ground motion effects in loess regions can be approximately estimated, and the amplification mechanism of the far-field ground motion mechanism can be further explained. In addition to the refraction and reflection theory of seismic waves, the resonance phenomenon may help explain the slope topographic effect through spectrum analysis.


Author(s):  
Haruyuki Yamamoto ◽  
Munkhunur Togtokhbuyan

One-dimensional layered soil lumped mass ground response analysis was conducted for the representative site in Ulaanbaatar, Mongolia. The surficial geology of the site is predominantly composed of the gravely and sandy soil typical of this region in the central part of Ulaanbaatar. The natural period of soil profiles needs to be investigated under several circumstances. For example, these parameters-based study has indicated that damage due to earthquakes occurs when the natural periods, T1 and T2, of the ground are closer to that of a superstructure. Various computational procedures or methods have been proposed for this kind of the ground response analysis. In this paper, the numerical analysis method such as the lumped mass method within eigenvalue analysis is used to determine the natural periods of the ground. The ground surface, soil deposits, and bedrock are assumed to be horizontal. The soil deposits are subjected to shear deformation such as shear modulus, G, on the other hand, excitation of vibration could be a shear modulus on each layer. As well as to determine an engineering bedrock depth in the site, the methodology that is utilized in this paper is focused on the use of the correlation between SPT-N value and soil elastic Young's modulus, E, in the soil profiles, and used over 100 boreholes data with SPT-N values in the vicinity of Ulaanbaatar.


2022 ◽  
pp. 875529302110608
Author(s):  
Chuanbin Zhu ◽  
Fabrice Cotton ◽  
Hiroshi Kawase ◽  
Annabel Haendel ◽  
Marco Pilz ◽  
...  

Earthquake site responses or site effects are the modifications of surface geology to seismic waves. How well can we predict the site effects (average over many earthquakes) at individual sites so far? To address this question, we tested and compared the effectiveness of different estimation techniques in predicting the outcrop Fourier site responses separated using the general inversion technique (GIT) from recordings. Techniques being evaluated are (a) the empirical correction to the horizontal-to-vertical spectral ratio of earthquakes (c-HVSR), (b) one-dimensional ground response analysis (GRA), and (c) the square-root-impedance (SRI) method (also called the quarter-wavelength approach). Our results show that c-HVSR can capture significantly more site-specific features in site responses than both GRA and SRI in the aggregate, especially at relatively high frequencies. c-HVSR achieves a “good match” in spectral shape at ∼80%–90% of 145 testing sites, whereas GRA and SRI fail at most sites. GRA and SRI results have a high level of parametric and/or modeling errors which can be constrained, to some extent, by collecting on-site recordings.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ngoc-Long Tran ◽  
Muhammad Aaqib ◽  
Ba-Phu Nguyen ◽  
Duy-Duan Nguyen ◽  
Viet-Linh Tran ◽  
...  

This study presents a case study on ground response analysis of one of the important cultural heritages in Hanoi, Vietnam. One-dimensional nonlinear and equivalent linear site response analyses which are commonly applied to solve the problem of seismic stress wave propagation are performed at the Ba Dinh square area. A measured in-situ shear wave velocity profile and corresponding geotechnical site investigation and laboratory test data are utilized to develop the site model for site-specific ground response analysis. A suite of earthquake records compatible with Vietnamese Design Code TCVN 9386: 2012 rock design spectrum is used as input ground motions at the bedrock. A few concerns associated with site-specific ground response evaluation are analyzed for both nonlinear and equivalent linear procedures, including shear strains, mobilized shear strength, and peak ground acceleration along with the depth. The results show that the mean maximum shear strains at any soil layer are less than 0.2% in the study area. A deamplification portion within the soil profile is observed at the layer interface with shear wave velocity reversal. The maximum peak ground acceleration (PGA) at the surface is about 0.2 g for equivalent linear analysis and 0.16 g for nonlinear analysis. The ground motions are amplified near the site natural period 0.72 s. The soil factors calculated in this study are 1.95 and 2.07 for nonlinear and equivalent linear analyses, respectively. These values are much different from the current value of 1.15 for site class C in TCVN 9386: 2012. A comparison of calculated response spectra and amplification factors with the local standard code of practice revealed significant discrepancies. It is demonstrated that the TCVN 9386: 2012 soil design spectrum is unable to capture the calculated site amplification in the study area.


2021 ◽  
pp. 45-54
Author(s):  
Sonia Akter

Ground motion is the movement of the earth's surface due to explosions or the propagation of seismic waves. In the seismic design process, ground response analysis evaluates the impact of local soil conditions during earthquake shaking. However, it is difficult to determine the dynamic site response of soil deposits in earthquake hazard-prone areas. Structural damage has a great influence on the selection of input ground motion, and in this study, the importance of bedrock motion upon the response of soil is highlighted. The specific site response analysis is assessed through “DEEPSOIl" software with an equivalent linear analysis method. Furthermore, four input motions including Kobe, LomaGilroy, Northridge, and Chi-Chi were selected to obtain normalized response spectra. This study aims to obtain the site amplification of ground motion, peak spectral acceleration (PSA), and maximum peak ground acceleration (PGA) based on shear wave velocity from the detailed site-specific analysis of Bangabandhu Sheikh Mujibor Rahman hall at Khulna University of Engineering & Technology. The maximum shear wave velocity obtained was 205 m/s while the amplification factor varied from 4.01 (Kobe) to 1.8 (Northridge) for rigid bedrock properties. Furthermore, the Kobe earthquake produced the highest (4.3g) PSA and the Northridge earthquake produced the lowest (1.08g) PSA for bedrock, with Vs=205 m/s. The surface PGA values were acquired in the range of 0.254g (Northridge) to 0.722g (Kobe), and the maximum strain values for Kobe earthquakes were in the range of 0.016 to .303. Therefore, the surface acceleration values were very high (>0.12g) for the Kobe earthquake motion.


Author(s):  
Satoshi Fujita ◽  
Keisuke Minagawa ◽  
Mitsuru Miyazaki ◽  
Go Tanaka ◽  
Toshio Omi ◽  
...  

This paper describes three-dimensional isolation performance of seismic isolation system using air bearings. Long period seismic waves having predominant period of from a few seconds to a few ten seconds have recently been observed in various earthquakes. Also resonances of high-rise buildings and sloshing of petroleum tanks in consequence of long period seismic waves have been reported. Therefore the isolation systems having very long natural period or no natural period are required. In a previous paper [1], we proposed an isolation system having no natural period by using air bearings. Additionally we have already reported an introduction of the system, and have investigated horizontal motion during earthquake in the previous paper. It was confirmed by horizontal vibration experiment and simulation in the previous paper that the proposed system had good performance of isolation. However vertical motion should be investigated, because vertical motion varies horizontal frictional force. Therefore this paper describes investigation regarding vertical motion of the proposed system by experiment. At first, a vertical excitation test of the system is carried out so as to investigate vertical dynamic property. Then a three-dimensional vibration test using seismic waves is carried out so as to investigate performance of isolation against three-dimensional seismic waves.


Sign in / Sign up

Export Citation Format

Share Document