scholarly journals Interspecific Interactions: A Case Study using the Tuatara-Fairy Prion Association

2021 ◽  
Author(s):  
◽  
Ilse Corkery

<p>Some of the key relationships in the life of an organism are interactions with individuals of other species within the community, for example, negative interactions such as predation and competition are well known to shape natural communities. Positive interactions also have well documented influences, such as intertidal seaweed canopies extending the distribution of many organisms to higher tidal heights, by reducing thermal and desiccation stresses. However, investigating interactions and measuring their significance for fitness is notoriously difficult. For example, several groups of fish are known to ‘clean’ other fish species by feeding on their ectoparasites, a mutually beneficial arrangement. However, foraging by cleaners can damage scales of their hosts and this interaction can become parasitic in times of low ectoparasite abundance. Using both field and laboratory data, I investigated factors that influenced the dynamics of an unusual vertebrate association, the cohabitation of tuatara and fairy prions in a burrow. The end goal was to contribute to the understanding of the classification of this association. The fairy prion is a seabird that comes to land only for the breeding season and the tuatara is a burrowing reptile, active primarily at night in a temperate climate. Specifically, I measured the effects that this association had on tuatara thermoregulation, and demonstrated the difficulty in applying that information to categorize a complex interaction. Investigations into the temporal and spatial habitat of the tuatara, and the degree to which this influenced thermal opportunities, revealed that mean tuatara body temperatures were always within mean environmental temperatures. Males and females did not differ in mean body temperature or effectiveness of thermoregulation. Body size did not predict body temperature or cooling rates, but heating rates were influenced, with larger animals heating faster than smaller individuals. The presence of a fairy prion in a burrow increased humidity within the burrow, and tuatara that occupied burrows containing a fairy prion were able to maintain up to 1.8°C higher body temperatures through the night during the austral summer months. Thus, burrow use behaviour and burrow selection had greater influences on tuatara body temperature than an individual’s sex or size. Experimental evidence revealed that tuatara are capable of adjusting their habitat selection behaviour in response to different humidity constraints. More time was spent outside the burrows and tuatara were more active under humid laboratory conditions. Use of the burrow by tuatara almost halved the time that fairy prions spent at the burrow with their chick, indicating that tuatara were having a negative effect on fairy prions’ use of their burrow. There was no evidence to support the fact that fairy prions were gaining any fitness benefits from their association with tuatara. Thus, we cannot call this interaction a commensalism or a mutualism. In certain instances, it may be that this interaction is best classed as a parasitism with the tuatara benefitting from burrow use and easy predation opportunities, to the detriment of the lifetime reproductive success of the fairy prion. In other instances it may simply be a case of competition for a limited resource (a burrow) with the outcome varying depending on the individuals and the circumstances involved. Being able to categorize interactions between species of high conservation value or at least to have an understanding of the costs and benefits associated with the interaction is desirable for conservation purposes, as failure to consider the ecological network within which a threatened species is embedded, may lead to counterproductive management measures. Further, these results can be used to develop future research into how climatic changes in temperature and rainfall may interact with habitat availability to influence the full range of natural outcomes of the tuatara-fairy prion association.</p>

2021 ◽  
Author(s):  
◽  
Ilse Corkery

<p>Some of the key relationships in the life of an organism are interactions with individuals of other species within the community, for example, negative interactions such as predation and competition are well known to shape natural communities. Positive interactions also have well documented influences, such as intertidal seaweed canopies extending the distribution of many organisms to higher tidal heights, by reducing thermal and desiccation stresses. However, investigating interactions and measuring their significance for fitness is notoriously difficult. For example, several groups of fish are known to ‘clean’ other fish species by feeding on their ectoparasites, a mutually beneficial arrangement. However, foraging by cleaners can damage scales of their hosts and this interaction can become parasitic in times of low ectoparasite abundance. Using both field and laboratory data, I investigated factors that influenced the dynamics of an unusual vertebrate association, the cohabitation of tuatara and fairy prions in a burrow. The end goal was to contribute to the understanding of the classification of this association. The fairy prion is a seabird that comes to land only for the breeding season and the tuatara is a burrowing reptile, active primarily at night in a temperate climate. Specifically, I measured the effects that this association had on tuatara thermoregulation, and demonstrated the difficulty in applying that information to categorize a complex interaction. Investigations into the temporal and spatial habitat of the tuatara, and the degree to which this influenced thermal opportunities, revealed that mean tuatara body temperatures were always within mean environmental temperatures. Males and females did not differ in mean body temperature or effectiveness of thermoregulation. Body size did not predict body temperature or cooling rates, but heating rates were influenced, with larger animals heating faster than smaller individuals. The presence of a fairy prion in a burrow increased humidity within the burrow, and tuatara that occupied burrows containing a fairy prion were able to maintain up to 1.8°C higher body temperatures through the night during the austral summer months. Thus, burrow use behaviour and burrow selection had greater influences on tuatara body temperature than an individual’s sex or size. Experimental evidence revealed that tuatara are capable of adjusting their habitat selection behaviour in response to different humidity constraints. More time was spent outside the burrows and tuatara were more active under humid laboratory conditions. Use of the burrow by tuatara almost halved the time that fairy prions spent at the burrow with their chick, indicating that tuatara were having a negative effect on fairy prions’ use of their burrow. There was no evidence to support the fact that fairy prions were gaining any fitness benefits from their association with tuatara. Thus, we cannot call this interaction a commensalism or a mutualism. In certain instances, it may be that this interaction is best classed as a parasitism with the tuatara benefitting from burrow use and easy predation opportunities, to the detriment of the lifetime reproductive success of the fairy prion. In other instances it may simply be a case of competition for a limited resource (a burrow) with the outcome varying depending on the individuals and the circumstances involved. Being able to categorize interactions between species of high conservation value or at least to have an understanding of the costs and benefits associated with the interaction is desirable for conservation purposes, as failure to consider the ecological network within which a threatened species is embedded, may lead to counterproductive management measures. Further, these results can be used to develop future research into how climatic changes in temperature and rainfall may interact with habitat availability to influence the full range of natural outcomes of the tuatara-fairy prion association.</p>


2001 ◽  
Vol 49 (3) ◽  
pp. 223 ◽  
Author(s):  
Detlef H. Rohr ◽  
Brian S. Malone

Local climatic conditions influence the way in which ectotherms regulate their body temperature and activity. We examined correlations between local climatic conditions, body temperature and activity in adult, basking lowland copperheads (Austrelaps superbus) from two localities (warm-temperate versus cool-temperate) in south-eastern Australia. We also collected data from highland copperheads (Austrelaps ramsayi) at a locality with cold-temperate climate. We found that across the active season, mean body temperatures were similar among localities (approximately 27˚C) irrespective of species. In contrast, activity times differed. Cool-temperate A. superbus emerged earlier in spring and in the morning and retreated earlier in the evening and in autumn than their conspecifics from the warm-temperate locality. Spring emergence was correlated with yearly fluctuations in thermal conditions, suggesting that activity times depend on environmental temperatures. Predator–prey interactions influenced body temperature and activity to some extent in spring when warm-temperate A. superbus with relatively low body temperatures (as low as 18.5˚C) were captured around ponds in which they had been foraging for frogs. Austrelaps ramsayi from the cold-temperate locality not only displayed a later emergence in spring and reduced daily activity times compared with warm and cool-temperate A. superbus but also compared with A. ramsayi, as reported from a warmer locality in eastern Australia. These data indicate that activity times vary on a geographic basis while snake body temperatures largely remain inflexible. The surprising exception was that cold-temperate A. ramsayi retreated later in autumn than cool-temperate A. superbus, and at that time they showed body temperatures as low as 12.5˚C, well below those we had recorded for A. superbus. We suggest that A. ramsayi retreat later in autumn because they need to extend their reproductive season and that this is mediated via adaptive changes in the critical minimum body temperature, as has been reported for other snakes.


2018 ◽  
Vol 285 (1879) ◽  
pp. 20180639 ◽  
Author(s):  
Oscar Nordahl ◽  
Petter Tibblin ◽  
Per Koch-Schmidt ◽  
Hanna Berggren ◽  
Per Larsson ◽  
...  

In terrestrial environments, cold-blooded animals can attain higher body temperatures by sun basking, and thereby potentially benefit from broader niches, improved performance and higher fitness. The higher heat capacity and thermal conductivity of water compared with air have been universally assumed to render heat gain from sun basking impossible for aquatic ectotherms, such that their opportunities to behaviourally regulate body temperature are largely limited to choosing warmer or colder habitats. Here we challenge this paradigm. Using physical models we first show that submerged objects exposed to natural sunlight attain temperatures in excess of ambient water. We next demonstrate that free-ranging carp ( Cyprinus carpio ) can increase their body temperature during aquatic sun basking close to the surface. The temperature excess gained by basking was larger in dark than in pale individuals, increased with behavioural boldness, and was associated with faster growth. Overall, our results establish aquatic sun basking as a novel ecologically significant mechanism for thermoregulation in fish. The discovery of this previously overlooked process has practical implications for aquaculture, offers alternative explanations for behavioural and phenotypic adaptations, will spur future research in fish ecology, and calls for modifications of models concerning climate change impacts on biodiversity in marine and freshwater environments.


1991 ◽  
Vol 69 (7) ◽  
pp. 1842-1847 ◽  
Author(s):  
Gregory K. Snyder ◽  
Joseph R. Coelho ◽  
Dalan R. Jensen

In chicks the ability to regulate body temperature to adult levels develops during the first 2 weeks of life. We examined whether the ability of young chicks to regulate body temperature is increased by elevated levels of the thyroid hormone 3,3′5-triiodothyronine. By 13 days following hatch, body temperatures of chicks were not significantly different from those expected for adult birds. Furthermore, at an ambient temperature of 10 °C, 13-day-old control chicks were able to maintain body temperature, and elevated serum thyroid hormone levels did not increase rates of oxygen consumption or body temperature above control values. Six-day-old chicks had body temperatures that were significantly lower than those of the 13-day-old chicks and were not able to regulate body temperature when exposed to an ambient temperature of 10 °C. On the other hand, 6-day-old chicks with elevated serum thyroid hormone had significantly higher rates of oxygen consumption than 6-day-old control chicks, and were able to maintain constant body temperatures during cold exposure. The increased oxygen consumption rates and improved ability to regulate body temperature during cold exposure were correlated with increased citrate synthase activity in skeletal muscle. Our results support the argument that thyroid hormones play an important role in the development of thermoregulatory ability in neonate birds by stimulating enzyme activities associated with aerobic metabolism.


2021 ◽  
Vol 7 (2) ◽  
pp. 228
Author(s):  
Siti Haizam Mohd Zin ◽  
Mohammad Nazri

Extensive research on the relationship between employees' use of English in the workplace and their job performance has revealed that the use of English at work leads to increased job performance and positive interactions among staff. In relation to this, a good command of English among military staff, especially officers, is of great importance to the Armed Forces, as military personnel often serve abroad and need to be proficient in communicating their instructions and orders to a foreign team. Previous research has also shown that self-efficacy is a significant predictor of job performance; however, the role of self-efficacy in learning English language skills has not been widely explored as mediator in the relationship between motivation to learn, intention to share knowledge, and job performance. Therefore, this paper aims to develop a conceptual framework that can be used to improve the understanding of English self-efficacy and its relationship with employees’ motivation to learn, intention to share knowledge, and capability to complete a given task. This framework informs and guides future research that will test the hypothesized relationships. The findings would assist the English Department of the Education Directorate of the Malaysian Armed Forces to design or revise military training syllabi and approaches.


2021 ◽  
Vol 5 (3) ◽  
pp. 543-549
Author(s):  
Helmy Yudhistira Putra ◽  
Utomo Budiyanto

During the COVID-19 pandemic, the price of preventive equipment such as masks and hand sanitizers has increased significantly. Likewise, thermometers are experiencing an increase and scarcity, this tool is also sought after by many companies for screening employees and guests before entering the building to detect body temperatures that are suspected of being positive for COVID-19. The use of a thermometer operated by humans is very risky because dealing directly with people who could be ODP (People Under Monitoring/Suscpected ) or even positive for COVID-19, therefore we need tools for automatic body temperature screening and do not involve humans for the examination. This research uses the MLX-90614 body temperature sensor equipped with an ultrasonic support sensor to detect movement and measure the distance between the forehead and the temperature sensor so that the body heat measurement works optimally, and a 16x2 LCD to display the temperature measurement results. If the measured body temperature is more than 37.5 ° C degrees Celsius then the buzzer will turn on and the selenoid door lock will not open and will send a notification to the Telegram messaging application. The final result obtained is the formation of a prototype device for measuring body temperature automatically without the need to involve humans in measuring body temperature to control people who want to enter the building so as to reduce the risk of COVID-19 transmission


Author(s):  
Ting-Min Hsieh ◽  
Pao-Jen Kuo ◽  
Shiun-Yuan Hsu ◽  
Peng-Chen Chien ◽  
Hsiao-Yun Hsieh ◽  
...  

This study aimed to assess whether hypothermia is an independent predictor of mortality in trauma patients in the condition of defining hypothermia as body temperatures of <36 °C. Data of all hospitalized adult trauma patients recorded in the Trauma Registry System at a level I trauma center between 1 January 2009 and 12 December 2015 were retrospectively reviewed. A multivariate logistic regression analysis was performed in order to identify factors related to mortality. In addition, hypothermia and normothermia were defined as temperatures <36 °C and from 36 °C to 38 °C, respectively. Propensity score-matched study groups of hypothermia and normothermia patients in a 1:1 ratio were grouped for mortality assessment after adjusting for potential confounders such as age, sex, preexisting comorbidities, and injury severity score (ISS). Of 23,705 enrolled patients, a total of 401 hypothermic patients and 13,368 normothermic patients were included in this study. Only 3.0% of patients had hypothermia upon arrival at the emergency department (ED). Compared to normothermic patients, hypothermic patients had a significantly higher rate of abbreviated injury scale (AIS) scores of ≥3 in the head/neck, thorax, and abdomen and higher ISS. The mortality rate in hypothermic patients was significantly higher than that in normothermic patients (13.5% vs. 2.3%, odds ratio (OR): 6.6, 95% confidence interval (CI): 4.86–9.01, p < 0.001). Of the 399 well-balanced propensity score-matched pairs, there was no significant difference in mortality (13.0% vs. 9.3%, OR: 1.5, 95% CI: 0.94–2.29, p = 0.115). However, multivariate logistic regression analysis revealed that patients with low body temperature were significantly associated with the mortality outcome. This study revealed that low body temperature is associated with the mortality outcome in the multivariate logistic regression analysis but not in the propensity score matching (PSM) model that compared patients with hypothermia defined as body temperatures of <36 °C to those who had normothermia. These contradicting observations indicated the limitation of the traditional definition of body temperature for the diagnosis of hypothermia. Prospective randomized control trials are needed to determine the relationship between hypothermia following trauma and the clinical outcome.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4575
Author(s):  
Julyana Machado da Silva Martins ◽  
Evandro De Abreu Fernandes ◽  
João Paulo Rodrigues Bueno ◽  
Carolina Magalhães Caires Carvalho ◽  
Fernanda Heloisa Litz ◽  
...  

<p>The objective of this study was to evaluate the effect of different nutritional plans on the body temperature and organ biometrics in male and female broilers, of two ages. Here, 1,700 birds were used (850 males and 850 females) in a completely randomized design composed of five treatments (- 3%, - 1.5%, reference, + 1.5% and + 3%), with 10 repetitions, totaling 50 experimental units; the reference treatment based on nutritional and energy levels indicated in previous studies was calculated from this. At 35 and 42 d, the temperatures of the wing, head, shin, back, and cloaca in males and females were measured separately, and the average surface and body temperature were calculated. At 42 d, relative weights of the gizzard, liver, heart, and small intestine were calculated. The temperatures of the wings, back, and cloaca, and consequently the average surface temperature and body temperatures, were not affected by nutritional plans. Effects of increasing the nutritional and energy levels were observed on liver weights, the gizzard, and the small intestine. We conclude that the nutritional plans did not affect body temperature. Males had higher body temperatures than females. Body temperature increased with increase in age, and the increase in the nutritional plans increased liver weight and reduced the gizzard weights.</p>


2020 ◽  
Vol 19 (1) ◽  
pp. 21-39
Author(s):  
Marta Rokosa ◽  
Małgorzata Mikiciuk

The genus Fragaria belongs to the Rosaceae family. The most popular representatives of this species are the strawberry (Fragaria × ananassa Duch.) and wild strawberry (Fragaria vesca L.), whose taste and health benefits are appreciated by a huge number of consumers. The cultivation of Fragaria plants is widespread around the world, with particular emphasis on the temperate climate zone. Increasingly occurring weather anomalies, including drought phenomena, cause immense losses in crop cultivation. The Fragaria plant species are very sensitive to drought, due to the shallow root system, large leaf area and the high water content of the fruit. There have been many studies on the influence of water deficit on the morphological, biochemical and physiological features of strawberries and wild strawberries. There is a lack of research summarizing the current state of knowledge regarding of specific species response to water stress. The aim of this study was to combine and compare data from many research carried out and indicate the direction of future research aimed at improving the resistance of Fragaria plants species to stress related to drought. These plants show patterns of response to stress caused by drought, such as: osmotic adjustment, reduction of transpiration and photosynthesis, and increased efficiency of water use. Drought also causes significant changes in the composition and palatability of the fruit of the Fragaria plant species.


1962 ◽  
Vol 15 (2) ◽  
pp. 386 ◽  
Author(s):  
PR Morrison

Body temperature measurements on the short-nosed bandicoot (Thylacis obeaulus) have shown a nocturnal cycle with a range of 1� 2�C and a short active phase at 2200-0400 hr. The bilby or rabbit bandicoot (Macrotis lagoti8) had a sharply defined temperature cycle, with a range of almost 3�C after several months of captivity, during which the day-time resting temperature was progressively lowered from 36� 4 to 34� 2�C. Forced activity raised the diurnal temperature substantially but not to the nocturnal level. Forced activity did not raise the nocturnal level which was similar in the two species (37' O�C). Both species could regulate effectively at an ambient temperature of 5�C, but only Thylaci8 showed regulation at ambient temperatures of between 30 and 40�C.


Sign in / Sign up

Export Citation Format

Share Document