scholarly journals Electron Microscopic Confirmation of Anisotropic Pore Characteristics for ECMO Membranes Theoretically Validating the Risk of SARS-CoV-2 Permeation

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 529
Author(s):  
Makoto Fukuda ◽  
Tomoya Furuya ◽  
Kazunori Sadano ◽  
Asako Tokumine ◽  
Tomohiro Mori ◽  
...  

The objective of this study is to clarify the pore structure of ECMO membranes by using our approach and theoretically validate the risk of SARS-CoV-2 permeation. There has not been any direct evidence for SARS-CoV-2 leakage through the membrane in ECMO support for critically ill COVID-19 patients. The precise pore structure of recent membranes was elucidated by direct microscopic observation for the first time. The three types of membranes, polypropylene, polypropylene coated with thin silicone layer, and polymethylpentene (PMP), have unique pore structures, and the pore structures on the inner and outer surfaces of the membranes are completely different anisotropic structures. From these data, the partition coefficients and intramembrane diffusion coefficients of SARS-CoV-2 were quantified using the membrane transport model. Therefore, SARS-CoV-2 may permeate the membrane wall with the plasma filtration flow or wet lung. The risk of SARS-CoV-2 permeation is completely different due to each anisotropic pore structure. We theoretically demonstrate that SARS-CoV-2 is highly likely to permeate the membrane transporting from the patient’s blood to the gas side, and may diffuse from the gas side outlet port of ECMO leading to the extra-circulatory spread of the SARS-CoV-2 (ECMO infection). Development of a new generation of nanoscale membrane confirmation is proposed for next-generation extracorporeal membrane oxygenator and system with long-term durability is envisaged.

2019 ◽  
Vol 8 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Yuan Gao ◽  
Hongwen Jing ◽  
Zefu Zhou

Abstract Nano cement additive using a hybrid of graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) combines the excellent affinity of GO and the superior mechanical properties of MWCNTs. Ultrasonication is the key process to disperse the GO/MWCNTs and further optimizes the pore structures of cement-based pastes. Fractal dimension can effectively and quantitatively characterize the pore structures of cementitious composites. The present study investigates the fractal dimensions of pore structures of GO/MWCNT-OPC pastes under power- and time-controlled ultrasonication based on the mercury intrusion porosimetry (MIP) tests data. The finding of this study shows that comparing to calculating the fractal dimension of the overall pore size range, assessing the variations of fractal dimension of individual pore size range is more effective in evaluating the pore characteristic. The fractal dimension of larger capillary pores $$\left( {{D}_{>{{10}^{4}}nm}} \right)$$can be use to describe the change of pore structure of GO/MWCNT-OPC pastes under ultrasonication treatment with sufficient accuracy as higher value of $${{D}_{>{{10}^{4}}nm}}$$indicates better pore characteristics. The fractal dimension change trend of mesopores is always opposite to that of bigger capillary pores. Modest increment in both power- and time-controlled ultrasonication seems to result in the increase of the fractal dimension of capillary pores and lead to better reinforcement effects. Prolongation of ultrasonication time slightly influences the pore structure of the specimens, while nano cement additives exposed to excess ultrasonication power fail to afford adequate reinforcing effect and finally cause the deterioration of the pore structures. The findings of this study can provide helpful information of GO/MWCNT-OPC pastes and ultrasonication treatment in the future.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2678 ◽  
Author(s):  
Wei Yu ◽  
Xu Liang ◽  
Frank Mi-Way Ni ◽  
Abimbola Grace Oyeyi ◽  
Susan Tighe

This study investigated the pore structure and its effects on mechanical properties of lightweight cellular concrete (LCC) in order to understand more and detailed characteristics of such structure. As part of investigation, environment scanning electron microscopes (ESEM) and industrial high-definition (HD) macro photography camera were separately used to capture and compare images of specimens. Physical properties of the pore structure, including pore area, size, perimeter, fit ellipse, and shape descriptors, were studied based on the image processing technology and software applications. Specimens with three different densities (400, 475, and 600 kg/m3) were prepared in the laboratory. Firstly, the effects of density on the characteristics of pore structure were investigated; furthermore, mechanical properties (compressive strength, modulus of elasticity and Poisson’s ratio, flexural strength and splitting tensile strength of LCC) were tested. The relationships among pore characteristics, density, and mechanical properties were analyzed. Based on the results obtained from the lab test—comparisons made between specimens with high-densities and those with low-densities—it was found significant variability in bubble size, thickness, and irregularity of pores. Furthermore, the increase of density is accompanied by better mechanical properties, and the main influencing factors are the thickness of the solid part and the shape of the bubble. The thicker of solid part and more regular pores of LCC has, the better mechanical properties are.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
John B. Lowe ◽  
Richard T. Baker

Ordered mesoporous silica materials are of interest for a wide range of applications. In many of these, elevated temperatures are used either in the preparation of the material or during its use. Therefore, an understanding of the effect of high temperature treatments on these materials is desirable. In this work, a detailed structural study is performed on silicas with three representative pore structures: a 2-D hexagonal pore arrangement (SBA-15), a continuous 3D cubic bimodal pore structure (KIT-6), and a 3D large cage pore structure (FDU-12). Each silica is studied as prepared and after treatment at a series of temperatures between 300 and 900°C. Pore structures are imaged using Transmission Electron Microscopy. This technique is used in conjunction with Small-Angle X-ray Diffraction, gas physisorption, and29Si solid state Nuclear Magnetic Resonance. Using these techniques, the pore size distributions, the unit cell dimensions of the mesoporous structures, and the relative occupancy of the distinct chemical environments of Si within them are cross correlated for the three silicas and their evolution with treatment temperature is elucidated. The physical and chemical properties before, during, and after collapse of these structures at high temperatures are described as are the differences in behavior between the three silica structures.


2014 ◽  
Vol 1712 ◽  
Author(s):  
Seyoon Yoon ◽  
Isabel Galan ◽  
Kemal Celik ◽  
Fredrik P. Glasser ◽  
Mohammed S. Imbabi

ABSTRACTCalcium sulfoaluminate (CSA) cements are being developed using a novel processing method having as its objective lowering specific CO2 emissions by ∼50% relative to a Portland cement benchmark. We need to be able to measure the properties of the products. Porosity and permeability measurements help define the engineering properties but their quantification is influenced by the choice of experimental protocols. In the present study we used ordinary Portland cement (PC) paste as a benchmark and hydrated ye’elimite, which is a main component of CSA cements, to understand its pore structure. We report on the use of synchrotron-sourced radiation for µCT (Computerized Tomography) and 3D image re-construction of the internal micro-pore structure of PC and ye’elimite-gypsum pastes. As a comparison, porosity and permeability measurements were traditionally obtained using Mercury Intrusion Porosimetry (MIP). The Mori-Tanaka method and the polynomial statistical model were used to analyze the effects of different 3-D micro-pore structures on mechanical properties. The results show that e micro-pore structures differ considerably between PC and ye’elimite pastes and their bulk modulus is significantly affected by the shapes of their micro-pore structures.


2015 ◽  
Vol 8 (1) ◽  
pp. 354-357
Author(s):  
Shixiong Yuan ◽  
Haimin Guo ◽  
Yu Ding ◽  
Rui Deng

According to core data, this paper studies variation of resistivity in different pore structures and wettability conditions. The results show that with the increase of pore structure index m, the resistivity will increase significantly when the saturation is constant. Similarly, with increasing saturation index n, the resistivity will also increase even with the same saturation. With fixed m and n, the calculated formation water saturation will be very high, resulting in hydrocarbon reservoir being ignored. This variation characteristic is significant for the identification of hidden reservoir with atypical Archie formula.


2009 ◽  
Vol 9 (2) ◽  
pp. 6691-6737 ◽  
Author(s):  
S. Massart ◽  
C. Clerbaux ◽  
D. Cariolle ◽  
A. Piacentini ◽  
S. Turquety ◽  
...  

Abstract. The Infrared Atmospheric Sounding Interferometer (IASI) is one of the five European new generation instruments carried by the polar-orbiting MetOp-A satellite. Data assimilation is a powerful tool to combine these data with a numerical model. This paper presents the first steps made towards the assimilation of the total ozone columns from the IASI measurements into a chemistry transport model. The IASI ozone data used are provided by an inversion of radiances performed at the LATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales). As a contribution to the validation of this dataset, the LATMOS-IASI data are compared to a four dimensional ozone field, with low systematic and random errors compared to ozonesondes and OMI-DOAS data. This field results from the combined assimilation of ozone profiles from the MLS instrument and of total ozone columns from the SCIAMACHY instrument. It is found that on average, the LATMOS-IASI data tends to overestimate the total ozone columns by 2% to 8%. The random observation error of the LATMOS-IASI data is estimated to about 6%, except over polar regions and deserts where it is higher. Using this information, the LATMOS-IASI data are then assimilated, combined with the MLS data. This first LATMOS-IASI data assimilation experiment shows that the resulting analysis is quite similar to the one obtained from the combined MLS and SCIAMACHY data assimilation.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3724 ◽  
Author(s):  
Jana Bidulská ◽  
Róbert Bidulský ◽  
Marco Actis Grande ◽  
Tibor Kvačkaj

In powder metallurgy (PM), severe plastic deformation (SPD) is a well-known technological solution to achieve interesting properties. However, the occurrence of pores in the final product may limit these properties. Also, for a given type of microstructure, the stereometric parameters of the pore structures, such as shape (represented by Aspect and Dcircle) and distribution (fshape, and fcircle), decisively affect the final properties. The influence of different processing routes (pressing, sintering and equal channel angular pressing (ECAP)) on pore structures in an aluminum PM alloy is discussed. The nature of porosity, porosity evolution and its behavior is explored. The correlation between pore size and morphology is also considered. The final pore structure parameters (Aspect, Dcircle, fshape, and fcircle) of studied aluminum alloys produced by different processing routes depends on the different formation routes.


2009 ◽  
Vol 66 ◽  
pp. 5-8 ◽  
Author(s):  
Kenichiro Kita ◽  
Masaki Narisawa ◽  
Hiroshi Mabuchi ◽  
Masayoshi Itoh ◽  
Masaki Sugimoto ◽  
...  

Silicon carbide (SiC) based fibers with continuous pore structures were synthesized by the precursor method using a polycarbosilane (PCS) and polymethylhydrosiloxane (PMHS) polymer blends. The pore formation process can be explained by hydrogen gas dissolution in the polymer melt and desaturation process of the dissolved gas during the fiber spinning. We investigated the effect of PMHS additives with different chemical and physical natures on the obtained pore structures, because PMHS decomposition process played a role of hydrogen gas source. The individual polymer melts were characterized by viscosity measurement, gas chromatograph analysis and thermogravimetric (TG) analysis in order to obtain details of pore structure control.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3419 ◽  
Author(s):  
Erlei Su ◽  
Yunpei Liang ◽  
Lei Li ◽  
Quanle Zou ◽  
Fanfan Niu

Tectonic coals in coal seams may affect the process of enhanced coalbed methane recovery with CO2 sequestration (CO2-ECBM). The main objective of this study was to investigate the differences between supercritical CO2 (ScCO2) and intact and tectonic coals to determine how the ScCO2 changes the coal’s properties. More specifically, the changes in the tectonic coal’s pore structures and its gas desorption behavior were of particular interest. In this work, mercury intrusion porosimetry, N2 (77 K) adsorption, and methane desorption experiments were used to identify the difference in pore structures and gas desorption properties between and intact and tectonic coals after ScCO2 treatment. The experimental results indicate that the total pore volume, specific surface area, and pore connectivity of tectonic coal increased more than intact coal after ScCO2 treatment, indicating that ScCO2 had the greatest influence on the pore structure of the tectonic coal. Additionally, ScCO2 treatment enhanced the diffusivity of tectonic coal more than that of intact coal. This verified the pore structure experimental results. A simplified illustration of the methane migration before and after ScCO2 treatment was proposed to analyze the influence of ScCO2 on the tectonic coal reservoir’s CBM. Hence, the results of this study may provide new insights into CO2-ECBM in tectonic coal reservoirs.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jun Fu ◽  
Yue Yu

It is important to control and predict the macroscopic properties through pore structure parameters of cement-based materials. Microscopic pore structure of concrete has many characteristics, such as sizes and disordered distribution. It is necessary to use fractal theory to describe the pore structure of concrete. In order to establish the relationship between the pore structure characteristics of aerated concrete and porosity, shape factor, pore superficial area, average pore diameter, and average diameter, the fractal dimension of the pore structure was used to evaluate the pore structure characteristics of aerated concrete. The X-ray computed tomography (CT) images of the aerated concrete block pore structure were obtained by using the XTH320 series X-ray three-dimensional microscope. The pore characteristics of aerated concrete block were studied according to Image-Pro Plus (IPP). Based on the research of the fractal dimension measurement methods, the proposed MATLAB program automatically determined the fractal dimension of the aerated concrete block pore structure images. The research results indicated that the small pores (20 μm∼60 μm) of aerated concrete block account for a large percentage compared with the large pores (60 μm∼400 μm or more) from pore diameter distribution and the pore structure of aerated concrete block has obvious fractal features and the fractal dimension of aerated concrete block pore structure images were calculated to be in the range of 1.775–1.805. The pore fractal dimension has a strong correlation with the pore fractal characteristics of aerated concrete blocks. The fractal dimension of the pore structure linearly increases with porosity, shape factor, and pore surface area. The fractal dimension of the pore structure decreases with the average pore size and average diameter. Thus, the fractal dimension of the pore structure that is calculated by the MATLAB program based on fractal theory can be assumed as the integrative evaluation index for evaluating the pore structure characteristic of aerated concrete block.


Sign in / Sign up

Export Citation Format

Share Document