coagulation zone
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 12)

H-INDEX

5
(FIVE YEARS 2)

2022 ◽  
Vol 20 (4) ◽  
pp. 56-62
Author(s):  
M. A. Ryabova ◽  
M. Yu. Ulupov ◽  
N. A. Shumilova ◽  
G. V. Portnov ◽  
E. K. Tikhomirova ◽  
...  

Aim of the study was to compare the cutting and coagulation properties of 1.56 and 1.94 μm fiber lasers with those of a 0.98 μm semiconductor laser.Materials and methods. A comparative study of the biological effects of 1.56 and 1.94 µm lasers and a 0.98 µm semiconductor laser used in a constant, continuous mode was carried out. The cutting properties of the lasers were evaluated on the chicken muscle tissue samples by the width and depth of the ablation zone formed via a linear laser incision at a speed of 2 mm/s, while the coagulation properties were assessed by the width of the lateral coagulation zone. The zones were measured using a surgical microscope and a calibration slide. For statistical analysis, power values of 3, 5, 7, 9, and 11 W were chosen for each laser wavelength.Results. Analysis of the findings confirmed that laser wavelength had a statistically significant effect on the linear dependence between incision parameters and laser power. It was found that the 1.56 μm fiber laser (water absorption) had a greater coagulation ability but a comparable cutting ability compared with the 0.98 μm laser (hemoglobin absorption). When used in the power mode of 7W or higher, the 1.94 µm laser provided superior cutting performance compared with the 0.98 µm semiconductor laser at the same exposure power. Elevating the power in any of the lasers primarily increased the width of the ablation zone, and to a lesser extent – the crater depth and the width of the lateral coagulation zone. Therefore, in comparison with the 0.98 μm semiconductor laser, higher radiation power in the 1.56 and 1.94 μm lasers mainly influences their cutting properties, expanding the width and depth of the ablation zone, and has a smaller effect on their coagulation ability.Conclusion. The findings of the study showed that the 1.56 and 1.94 μm fiber lasers have better coagulation properties in comparison with the 0.98 μm semiconductor laser. was statistically proven that all incision characteristics (width of the lateral coagulation zone, depth and width of the ablation zone) for the 1.56, 1.94, and 0.98 μm lasers depend on the power of laser radiation. The 1.94 µm laser is superior to the 0.98 µm laser in its cutting properties. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tudor Mocan ◽  
Rares Stiufiuc ◽  
Calin Popa ◽  
Iuliana Nenu ◽  
Cosmin Pestean ◽  
...  

AbstractTo investigate the effects of PEG-coated gold nanoparticles on ablation zone volumes following in vivo radiofrequency ablation of porcine liver. This prospective study was performed following institutional animal care and committee approval was used. Radiofrequency ablations were performed in the livers of ten Sus scrofa domesticus swines. During each ablation, 10 mL (mL) of Peg-coated gold nanoparticles at two different concentrations (0.5 mg/mL and 0.01 mg/mL) were injected through the electrode channel into the target zone. For the control group, 10 mL of physiological saline was used. Five to ten minutes after each ablation, contrast enhanced ultrasound (CEUS) was performed to evaluate the volume of the coagulation zone. On day five we performed another CEUS and the animals were sacrificed. Treated tissues were explanted for quantification of the ablation zones’ volumes. Hematoxylin and eosin (H&E) staining was also performed for histologic analysis. A total of 30 ablations were performed in the livers. The mean coagulation zone volume as measured by CEUS on day 5 after RFA was: 21.69 ± 3.39 cm3, 19.22 ± 5.77 cm3, and 8.80 ± 3.33 cm3 for N1, N2 and PS respectively. The coagulation zone volume after N1 and N2 treatments was significantly higher compared to PS treatment (p < 0.001 and p = 0.025 respectively). There was no difference between N1 and N2 treatment (p = 0.60). In our proof-of concept, pilot study we have shown for the first time that when injected directly into the target tissue during RFA, gold nanoparticles can substantially increase the coagulation zone.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dora Luz Castro-López ◽  
Enrique Berjano ◽  
Ricardo Romero-Mendez

Abstract Background The volume of the coagulation zones created during radiofrequency ablation (RFA) is limited by the appearance of roll-off. Doping the tissue with conductive fluids, e.g., gold nanoparticles (AuNPs) could enlarge these zones by delaying roll-off. Our goal was to characterize the electrical conductivity of a substrate doped with AuNPs in a computer modeling study and ex vivo experiments to investigate their effect on coagulation zone volumes. Methods The electrical conductivity of substrates doped with normal saline or AuNPs was assessed experimentally on agar phantoms. The computer models, built and solved on COMSOL Multiphysics, consisted of a cylindrical domain mimicking liver tissue and a spherical domain mimicking a doped zone with 2, 3 and 4 cm diameters. Ex vivo experiments were conducted on bovine liver fragments under three different conditions: non-doped tissue (ND Group), 2 mL of 0.9% NaCl (NaCl Group), and 2 mL of AuNPs 0.1 wt% (AuNPs Group). Results The theoretical analysis showed that adding normal saline or colloidal gold in concentrations lower than 10% only modifies the electrical conductivity of the doped substrate with practically no change in the thermal characteristics. The computer results showed a relationship between doped zone size and electrode length regarding the created coagulation zone. There was good agreement between the ex vivo and computational results in terms of transverse diameter of the coagulation zone. Conclusions Both the computer and ex vivo experiments showed that doping with AuNPs can enlarge the coagulation zone, especially the transverse diameter and hence enhance sphericity.


2021 ◽  
Vol 19 (2) ◽  
pp. 50-55
Author(s):  
E. K. Tikhomirova ◽  

The study presents the results of the experimental action of laser radiation with a wavelength of 532 nm in continuous contact mode on biological tissues with different optical properties. The width of the ablation and coagulation zone, the degree of vaporization of various types of tissues were evaluated. Good coagulation properties of the laser are established when exposed to pigmented tissues. However, the pronounced color dependence characteristic of a given wavelength requires careful selection of the biological objects that are suitable for optical properties. Objectives: An experimental evaluation of the effects of a laser with a wavelength of 532 nm in a continuous contact mode on tissues with different optical and mechanical properties. Materials and methods. We carried out an experimental study of the effects of a laser with a wavelength of 532 nm in a continuous contact mode on biological tissues with different optical and mechanical properties. The crater width and side coagulation zone were measured using an operating microscope and a glass slide with a scale value of 0.1 mm. The tissue samples were weighed before and after the application of a point impact. The increase in laser power contributes to an increase in the width of the incision and the coagulation zone. A more pronounced adhesion of the tissue to the fiber end was noted when exposed to the liver tissue of cattle, which causes smaller values of the ablation zone width in comparison with the muscle tissue of the chicken and is reflected in high values of the error of the mean values. The greatest weight loss with a 2 seconds point impact at a power of 5 W was determined on the muscle tissue of the chicken. Conclusions. Good coagulation properties of the laser have been established when exposed to pigmented tissues, however, the pronounced color dependence characteristic of a given wavelength requires careful selection of the biological objects suitable for optical properties.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1660
Author(s):  
Jorge Yaulema ◽  
Jose Bon ◽  
M. Carmen Gómez-Collado ◽  
Juan José Pérez ◽  
Enrique Berjano ◽  
...  

Radiofrequency (RF)-based monopolar (MM) and bipolar mode (BM) applicators are used to thermally create coagulation zones (CZs) in biological tissues with the aim of destroying surface tumors and minimizing blood losses in surgical resection. Both modes have disadvantages as regards safely and in obtaining a sufficiently deep coagulation zone (CZ). In this study, we compared both modes versus a switching monopolar mode (SMM) in which the role of the active electrode changes intermittently between the two electrodes of the applicator. In terms of clinical impact, the three modes can easily be selected by the surgeon according to the surgical maneuver. We used computational and experimental models to study the feasibility of working in MM, BM, and SMM and to compare their CZ characteristics. We focused exclusively on BM and SMM, since MM only creates small coagulation zones in the area between the electrodes. The results showed that SMM produces the deepest CZ between both electrodes (33% more than BM) and SMM did not stop the generator when an electrode lost contact with the tissue, as occurred in BM. Our findings suggest that the selective use of SMM and BM with a bipolar applicator offers greater advantages than using each type alone.


2020 ◽  
Author(s):  
Dora Luz Castro-Lopez ◽  
Enrique Berjano ◽  
Ricardo Romero-mendez

Abstract Background: The volume of the coagulation zones created during radiofrequency ablation (RFA) is limited by the appearance of roll-off. Doping the tissue with conductive fluids, e.g. gold nanoparticles (AuNPs) could enlarge these zones by delaying roll-off. Our goal was to characterize the electrical conductivity of a substrate doped with AuNPs in a computer modeling study and ex vivo experiments to investigate their effect on coagulation zone volumes. Methods: The electrical conductivity of substrates doped with normal saline or AuNPs was assessed experimentally on agar phantoms. The computer models, built and solved on COMSOL Multiphysics, consisted of a cylindrical domain mimicking liver tissue and a spherical domain mimicking a doped zone with 2, 3 and 4 cm diameters. Ex vivo experiments were conducted on bovine liver fragments under three different conditions: 1) non-doped tissue (ND Group), 2 mL of 0.9% NaCl (NaCl Group), and 2 mL of AuNPs 0.1 wt% (AuNPs Group). Results: The theoretical analysis showed that adding normal saline or colloidal gold in concentrations lower than 10% only modifies the electrical conductivity of the doped substrate with practically no change in the thermal characteristics. The computer results showed a relationship between doped zone size and electrode length regarding the created coagulation zone. There was good agreement between the ex vivo and computational results in terms of transverse diameter of the coagulation zone.Conclusions: Both the computer and ex vivo experiments showed that doping with AuNPs can enlarge the coagulation zone, especially the transverse diameter and hence enhance sphericity.


2020 ◽  
Author(s):  
Dora Luz Castro-Lopez ◽  
Enrique Berjano ◽  
Ricardo Romero-mendez

Abstract Background: The volume of the coagulation zones created during radiofrequency ablation (RFA) is limited by the appearance of roll-off. Doping the tissue with conductive fluids, e.g. gold nanoparticles (AuNPs) could enlarge these zones by delaying roll-off. Our goal was to characterize the electrical conductivity of a substrate doped with AuNPs in a computer modeling study and ex vivo experiments to investigate their effect on coagulation zone volumes. Methods: The electrical conductivity of substrates doped with normal saline or AuNPs was assessed experimentally on agar phantoms. The computer models, built and solved on COMSOL Multiphysics, consisted of a cylindrical domain mimicking liver tissue and a spherical domain mimicking a doped zone with 2, 3 and 4 cm diameters. Ex vivo experiments were conducted on bovine liver fragments under three different conditions: 1) non-doped tissue (ND Group), 2 mL of 0.9% NaCl (NaCl Group), and 2 mL of AuNPs 0.1 wt% (AuNPs Group). Results: The theoretical analysis showed that adding normal saline or colloidal gold in concentrations lower than 10% only modifies the electrical conductivity of the doped substrate with practically no change in the thermal characteristics. The computer results showed a relationship between doped zone size and electrode length regarding the created coagulation zone. There was good agreement between the ex vivo and computational results in terms of transverse diameter of the coagulation zone.Conclusions: Both the computer and ex vivo experiments showed that doping with AuNPs can enlarge the coagulation zone, especially the transverse diameter and hence enhance sphericity.


2020 ◽  
Author(s):  
Dora Luz Castro-Lopez ◽  
Enrique Berjano ◽  
Ricardo Romero-mendez

Abstract Background: The coagulation zone volume created during radiofrequency ablation (RFA) is limited by the appearance of roll-off. Doping the tissue with conductive fluids, e.g. gold nanoparticles (AuNPs) could enlarge the coagulation zones by delaying the roll-off. Our goal was to characterize the electrical conductivity of a substrate doped with AuNPs and to study by computer modeling and ex vivo experiments the effect on coagulation zone volumes.Methods: The electrical conductivity of substrates doped with normal saline or AuNPs was assessed experimentally using agar phantoms. The computer models, built and solved on COMSOL Multiphysics, consisted of a cylindrical domain mimicking liver tissue and a spherical domain mimicking a doped zone with diameters of 2, 3 and 4 cm. Ex vivo experiments were conducted on bovine liver fragments and under three different doping conditions: 1) non-doped tissue (ND Group), 2 mL of 0.9% NaCl (NaCl Group), and 2 mL of AuNPs 0.1 wt% (AuNPs Group).Results: The theoretical analysis showed that adding normal saline or colloidal gold in concentrations lower than 10% only modify the electrical conductivity of the doped substrate with practically no change of the thermal characteristics. The computer results showed a relationship between doped zone size and electrode length regarding the created coagulation zone. We observed a good agreement between ex vivo and computational results in terms of transverse diameter of the coagulation zone.Conclusions: Both computer and ex vivo experiments showed that doping with AuNPs can enlarge the coagulation zone, specially the transverse diameter, hence achieving more spherical coagulation zones.


Sign in / Sign up

Export Citation Format

Share Document