Coaxial electrospinning preparation and antibacterial property of polylactic acid/tea polyphenol nanofiber membrane

2022 ◽  
pp. 152808372110542
Author(s):  
Jie Wu ◽  
Shuqiang Liu ◽  
Man Zhang ◽  
Gaihong Wu ◽  
Haidan Yu ◽  
...  

The polylactic acid (PLA)/tea polyphenol (TP) nanofiber membranes were prepared by coaxial electrospinning. The physical properties, antibacterial agent release, degradation, and antibacterial properties were investigated. Results demonstrated that stepwise and controlled antibacterial agent release profiles were achieved based on the core-shell configuration and disparate degradation rate of PLA and TP. The mechanical performance decreased with the increase of the TP content in the shell layer. The cumulative antibacterial agent release rate of nanofiber membranes with different TP content was different, while the antibacterial agent release trend was the same. The antibacterial agent release rate of the sample was the fastest at the initial stage from 2 h to 8 h, and then gradually slowed down after 24 h. In addition, the antibacterial activity of the PLA/TP nanofiber membranes was confirmed by the inhibition zone method against both Gram-positive ( Staphylococcus aureus) and Gram-negative ( Escherichia coli). Results showed that the antibacterial performance of PLA/TP nanofiber was intensified with the increasing content of TP, especially had better antibacterial performance against S. aureus.

2013 ◽  
Vol 815 ◽  
pp. 333-338
Author(s):  
Ming Li Liu ◽  
Chun Feng Li ◽  
Yun Long Wang ◽  
Kai Lu ◽  
Jiu Yin Pang ◽  
...  

This study used Ag-embedded nanoTiO2, xylan and water-soluble Chitosan as antibacterial agents, respectively prepared shutter blades through the treating solution of the different concentration and the different drug loading amount of the poplar veneer. Through a single factor experiment, this paper analyzes that the different antibacterial agent, concentration of antibacterial agent and the drug loading amount have an effect on the antibacterial properties of the shutter blades. The results show that the order of antibacterial performance of the shutter blades impregnated antibacterial agents is the Ag-embedded nanoTiO2, Chitosan, Xylan. Comprehensiv-ely thought the antibacterial properties and economic index, the optimal concentration of the Ag-embedded nanoTiO2 impregnation solution is 1%.


2017 ◽  
Vol 898 ◽  
pp. 2254-2262 ◽  
Author(s):  
Lian Tang ◽  
Dan Yue Wang ◽  
Qiu Shu Xu ◽  
Chao Sheng Wang ◽  
Hua Ping Wang ◽  
...  

Due to its excellent mechanical property, dye ability and skin affinity, PA6 has been widely used in apparel, home textiles, military products, etc. However, PA6 fiber is easy to breed bacteria and corroded by bacteria in humid environment. One of development tendency of functional PA6 fiber is to design and develop nylon 6 fiber with excellent antibacterial properties, which is also the research target of this paper. In the present investigation, ZnO antibacterial agent was prepared through sol-gel method, and antibacterial masterbatch was acquired via blending antibacterial agent with PA6 using a twin-screw, then antibacterial PA6 fiber was obtained through melt spinning. The thermal properties, crystallization property of antibacterial PA6 masterbatch were discussed. The effect of drawing ratio on fiber strength, elongation of break, orientation and crystallization was also investigated. The antibacterial properties of antibacterial agent and antibacterial PA6 fiber was analyzed by agar diffusion method. The results of Differential Scanning Calorimetry (DSC) suggests that the antibacterial agent causes the rise of crystallization temperature and crystallization rate. X-Ray Diffraction (XRD) and mechanical testing results reveal that the higher drawing ratio leads to higher orientation and strength of PA6 fiber, lower elongation at break. The addition of antibacterial agent increases the degree of orientation and crystallization, reduces the strength of fiber and tends to form α crystalline in PA6 fiber. Antibacterial tests show that antibacterial PA6 fiber has a good antibacterial performance against Staphylococcus aureus.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1124
Author(s):  
Zhifang Liang ◽  
Hongwu Wu ◽  
Ruipu Liu ◽  
Caiquan Wu

Green biodegradable plastics have come into focus as an alternative to restricted plastic products. In this paper, continuous long sisal fiber (SF)/polylactic acid (PLA) premixes were prepared by an extrusion-rolling blending process, and then unidirectional continuous long sisal fiber-reinforced PLA composites (LSFCs) were prepared by compression molding to explore the effect of long fiber on the mechanical properties of sisal fiber-reinforced composites. As a comparison, random short sisal fiber-reinforced PLA composites (SSFCs) were prepared by open milling and molding. The experimental results show that continuous long sisal fiber/PLA premixes could be successfully obtained from this pre-blending process. It was found that the presence of long sisal fibers could greatly improve the tensile strength of LSFC material along the fiber extension direction and slightly increase its tensile elongation. Continuous long fibers in LSFCs could greatly participate in supporting the load applied to the composite material. However, when comparing the mechanical properties of the two composite materials, the poor compatibility between the fiber and the matrix made fiber’s reinforcement effect not well reflected in SSFCs. Similarly, the flexural performance and impact performance of LSFCs had been improved considerably versus SSFCs.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1411
Author(s):  
Mujahid Mehdi ◽  
Huihui Qiu ◽  
Bing Dai ◽  
Raja Fahad Qureshi ◽  
Sadam Hussain ◽  
...  

Fiber based antibacterial materials have gained an enormous attraction for the researchers in these days. In this study, a novel Sericin Encapsulated Silver Nanoclusters (sericin-AgNCs) were synthesized through single pot and green synthesis route. Subsequently these sericin-AgNCs were incorporated into ultrafine electrospun cellulose acetate (CA) fibers for assessing the antibacterial performance. The physicochemical properties of sericin-AgNCs/CA composite fibers were investigated by transmission electron microscopy (TEM), field emission electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and wide X-ray diffraction (XRD). The antibacterial properties of sericin-AgNCs/CA composite fibers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were systematically evaluated. The results showed that sericin-AgNCs incorporated in ultrafine CA fibers have played a vital role for antibacterial activity. An amount of 0.17 mg/mL sericin-AgNCs to CA fibers showed more than 90% results and elevated upto >99.9% with 1.7 mg/mL of sericin-AgNCs against E. coli. The study indicated that sericin-AgNCs/CA composite confirms an enhanced antibacterial efficiency, which could be used as a promising antibacterial product.


Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Sara Metwally ◽  
Daniel P. Ura ◽  
Zuzanna J. Krysiak ◽  
Łukasz Kaniuk ◽  
Piotr K. Szewczyk ◽  
...  

Atopic dermatitis (AD) is a chronic, inflammatory skin condition, caused by wide genetic, environmental, or immunologic factors. AD is very common in children but can occur at any age. The lack of long-term treatments forces the development of new strategies for skin regeneration. Polycaprolactone (PCL) is a well-developed, tissue-compatible biomaterial showing also good mechanical properties. In our study, we designed the electrospun PCL patches with controlled architecture and topography for long-term release in time. Hemp oil shows anti-inflammatory and antibacterial properties, increasing also the skin moisture without clogging the pores. It can be used as an alternative cure for patients that do not respond to traditional treatments. In the study, we tested the mechanical properties of PCL fibers, and the hemp oil spreading together with the release in time measured on skin model and human skin. The PCL membranes are suitable material as patches or bandages, characterized by good mechanical properties and high permeability. Importantly, PCL patches showed release of hemp oil up to 55% within 6 h, increasing also the skin moisture up to 25%. Our results confirmed that electrospun PCL patches are great material as oil carriers indicating a high potential to be used as skin patches for AD skin treatment.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2336
Author(s):  
Ruifang Zhao ◽  
Pengfei Tan ◽  
Yanting Han ◽  
Feng Yang ◽  
Yidong Shi ◽  
...  

(1) Background: Bacterial infections have long threatened global public safety; hence, it is significant to continuously develop antibacterial fibers that are closely related to people’s daily lives. Berberine hydrochloride is a natural antibacterial agent that has application prospects in the preparation of antibacterial fibers. (2) Methods: This study firstly verified the antibacterial properties of berberine hydrochloride and its possible antibacterial mechanism. Thereafter, berberine hydrochloride was introduced into the self-made melt-spun polyurethane fiber through optimized coating technology. The performance of coating modified polyurethane fiber has been systematically evaluated, including its antibacterial properties, mechanical properties, and surface wettability. (3) Results: Results show that the antibacterial polyurethane fiber with desirable comprehensive properties is expected to be used in the biomedical fields. (4) Conclusions: The research also provides a reference for the development and application of other natural antibacterial ingredients in fiber fields.


2011 ◽  
Vol 332-334 ◽  
pp. 77-80 ◽  
Author(s):  
Chuan Jie Zhang ◽  
Hong Yang ◽  
Yun Liu ◽  
Ping Zhu

Cotton fabric with excellent antibacterial properties was obtained by treated with polyamide-amine (PAMAM) dendrimers as a carrier and silver nitrate as an antibacterial agent. The antibacterial cotton fabrics were prepared by the methods of one-bath process and two-bath process. Antibacterial activity of cotton fabrics treated by two different methods was good, but the antibacterial durability of cotton fabric treated with two-bath process was better than that treated with one-bath process. After 50 washing cycles, cotton fabric treated with two-bath process still had good antibacterial property and its inhibitory rate to Gram-positive S. aureus and Gram-negative E. coli was over 99 %. It was found that the breaking strength retention of finished cotton fabrics was 85.83 % and the decrease of cotton fabrics’ whiteness index was about 15 %.


2021 ◽  
Vol 10 (1) ◽  
pp. 478-487
Author(s):  
Yu Liu ◽  
Heliang Wang ◽  
Xiwei Guo ◽  
Mingyuan Yi ◽  
Lihong Wan ◽  
...  

Abstract With the emerging of sustainability, the fabrication of effective and eco-friendly agents for rubber industry has attracted extensive attention. In this study, a novel and nontoxic titanium dioxide-based vulcanization accelerator (xanthate-modified nanotitanium dioxide (TDSX)) with excellent antibacterial performance, for the first time, was synthesized under the catalyst of ceric ammonium nitrate. Notably, the thermal stability of xanthate was greatly enhanced after being grafted on titanium dioxide (TiO2) nanoparticles, in which the activation energy was increased from 6.4 to 92.5 kJ/mol, enabling the obtained TDSX with multiple functions, mainly consisting of fabulous vulcanization-promoting effects, reinforcing effects, antibacterial properties, and anti-ultraviolet aging effects for natural rubber (NR). Simultaneously, the TDSX can be effectively and uniformly dispersed in the rubber matrix along with the developed interface interaction between TDSX particles and rubber matrix. Compared to the traditional accelerators 2-mercaptobenzothiazole (M) system, the tensile strength and the tearing strength of NR/TDSX was improved by 26.3 and 40.4%, respectively. Potentially, our work for preparing green vulcanization accelerator can provide a new design strategy for multifunctional high performance elastomer materials.


Sign in / Sign up

Export Citation Format

Share Document