scholarly journals Modules in connectomes of phase-synchronization comprise anatomically contiguous, spatially related regions

2021 ◽  
Author(s):  
N. Williams ◽  
S. H. Wang ◽  
G. Arnulfo ◽  
L. Nobili ◽  
S. Palva ◽  
...  

Modules in brain connectomes are essential to balancing the functional segregation and integration crucial to brain operation. Connectomes are the set of structural or functional connections between each pair of brain regions. Non-invasive methodologies, Electroencephalography (EEG) and Magnetoencephalography (MEG), have been used to identify modules in connectomes of phase-synchronization, but have been compromised by spurious phase-synchronization due to EEG volume conduction or MEG field spread. In this study, we used invasive, intracerebral recordings with stereo-electroencephalography (SEEG, N = 67), to identify modules in connectomes of phase-synchronization. To do this, we used submillimetre localization of SEEG contacts and closest-white-matter referencing, to generate group-level connectomes of phase-synchronization minimally affected by volume conduction. Then, we employed community detection methods together with a novel consensus clustering approach, to identify modules in connectomes of phase-synchronization. The connectomes of phase-synchronization possessed significant modular organization at multiple spatial scales, from 3-320 Hz. These identified modules were highly similar within neurophysiologically meaningful frequency bands. Modules up to the high-gamma frequency band comprised only anatomically contiguous regions, unlike modules identified with functional Magnetic Resonance Imaging (fMRI). Strikingly, the identified modules comprised cortical regions involved in shared repertoires of cognitive functions including vision, language and attention. These results demonstrate the viability of combining SEEG with advanced methods, to identify modules in connectomes of phase-synchronization. The modules correspond to brain systems with specific functional roles in perceptual, cognitive, and motor processing.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140165 ◽  
Author(s):  
Leonardo L. Gollo ◽  
Andrew Zalesky ◽  
R. Matthew Hutchison ◽  
Martijn van den Heuvel ◽  
Michael Breakspear

For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously—elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow timescales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding ‘feeder’ cortical regions shows unstable, rapidly fluctuating dynamics likely to be crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics.



2014 ◽  
Author(s):  
Michał Bola ◽  
Bernhard Sabel

How cognition emerges from neural dynamics? The dominant hypothesis states that interactions among distributed brain regions through phase synchronization give basis for cognitive processing. Such phase-synchronized networks are transient and dynamic, established on the timescale of milliseconds in order to perform specific cognitive operations. But unlike resting-state networks, the complex organization of transient cognitive networks is typically not characterized within the graph theory framework. Thus, it is not known whether cognitive processing merely changes strength of functional connections or, conversely, requires qualitatively new topological arrangements of functional networks. To address this question, we recorded high-density EEG when subjects performed a visual discrimination task and conducted and event-related network analysis (ERNA) where source-space weighted functional networks were characterized with graph measures. We revealed rapid, transient, and frequency-specific reorganization of the network?s topology during cognition. Specifically, cognitive networks were characterized by strong clustering, low modularity, and strong interactions between hub-nodes. Our findings suggest that dense and clustered connectivity between the hub nodes belonging to different modules is the ?network fingerprint? of cognition. Such reorganization patterns might facilitate global integration of information and provide a substrate for a ?global workspace? necessary for cognition and consciousness to occur. Thus, characterizing topology of the event-related networks opens new vistas to interpret cognitive dynamics in the broader conceptual framework of graph theory.



2005 ◽  
Vol 360 (1457) ◽  
pp. 1051-1074 ◽  
Author(s):  
Michael Breakspear ◽  
Cornelis J Stam

The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested.



2021 ◽  
Author(s):  
Marion Germain ◽  
Daniel Kneeshaw ◽  
Louis De Grandpré ◽  
Mélanie Desrochers ◽  
Patrick M. A. James ◽  
...  

Abstract Context Although the spatiotemporal dynamics of spruce budworm outbreaks have been intensively studied, forecasting outbreaks remains challenging. During outbreaks, budworm-linked warblers (Tennessee, Cape May, and bay-breasted warbler) show a strong positive response to increases in spruce budworm, but little is known about the relative timing of these responses. Objectives We hypothesized that these warblers could be used as sentinels of future defoliation of budworm host trees. We examined the timing and magnitude of the relationships between defoliation by spruce budworm and changes in the probability of presence of warblers to determine whether they responded to budworm infestation before local defoliation being observed by standard detection methods. Methods We modelled this relationship using large-scale point count surveys of songbirds and maps of cumulative time-lagged defoliation over multiple spatial scales (2–30 km radius around sampling points) in Quebec, Canada. Results All three warbler species responded positively to defoliation at each spatial scale considered, but the timing of their response differed. Maximum probability of presence of Tennessee and Cape May warbler coincided with observations of local defoliation, or provided a one year warning, making them of little use to guide early interventions. In contrast, the probability of presence of bay-breasted warbler consistently increased 3–4 years before defoliation was detectable. Conclusions Early detection is a critical step in the management of spruce budworm outbreaks and rapid increases in the probability of presence of bay-breasted warbler could be used to identify future epicenters and target ground-based local sampling of spruce budworm.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rossana Mastrandrea ◽  
Fabrizio Piras ◽  
Andrea Gabrielli ◽  
Nerisa Banaj ◽  
Guido Caldarelli ◽  
...  

AbstractNetwork neuroscience shed some light on the functional and structural modifications occurring to the brain associated with the phenomenology of schizophrenia. In particular, resting-state functional networks have helped our understanding of the illness by highlighting the global and local alterations within the cerebral organization. We investigated the robustness of the brain functional architecture in 44 medicated schizophrenic patients and 40 healthy comparators through an advanced network analysis of resting-state functional magnetic resonance imaging data. The networks in patients showed more resistance to disconnection than in healthy controls, with an evident discrepancy between the two groups in the node degree distribution computed along a percolation process. Despite a substantial similarity of the basal functional organization between the two groups, the expected hierarchy of healthy brains' modular organization is crumbled in schizophrenia, showing a peculiar arrangement of the functional connections, characterized by several topologically equivalent backbones. Thus, the manifold nature of the functional organization’s basal scheme, together with its altered hierarchical modularity, may be crucial in the pathogenesis of schizophrenia. This result fits the disconnection hypothesis that describes schizophrenia as a brain disorder characterized by an abnormal functional integration among brain regions.



Author(s):  
Archana Venkataraman ◽  
Sarah C. Hunter ◽  
Maria Dhinojwala ◽  
Diana Ghebrezadik ◽  
JiDong Guo ◽  
...  

AbstractFear generalization and deficits in extinction learning are debilitating dimensions of Post-Traumatic Stress Disorder (PTSD). Most understanding of the neurobiology underlying these dimensions comes from studies of cortical and limbic brain regions. While thalamic and subthalamic regions have been implicated in modulating fear, the potential for incerto-thalamic pathways to suppress fear generalization and rescue deficits in extinction recall remains unexplored. We first used patch-clamp electrophysiology to examine functional connections between the subthalamic zona incerta and thalamic reuniens (RE). Optogenetic stimulation of GABAergic ZI → RE cell terminals in vitro induced inhibitory post-synaptic currents (IPSCs) in the RE. We then combined high-intensity discriminative auditory fear conditioning with cell-type-specific and projection-specific optogenetics in mice to assess functional roles of GABAergic ZI → RE cell projections in modulating fear generalization and extinction recall. In addition, we used a similar approach to test the possibility of fear generalization and extinction recall being modulated by a smaller subset of GABAergic ZI → RE cells, the A13 dopaminergic cell population. Optogenetic stimulation of GABAergic ZI → RE cell terminals attenuated fear generalization and enhanced extinction recall. In contrast, optogenetic stimulation of dopaminergic ZI → RE cell terminals had no effect on fear generalization but enhanced extinction recall in a dopamine receptor D1-dependent manner. Our findings shed new light on the neuroanatomy and neurochemistry of ZI-located cells that contribute to adaptive fear by increasing the precision and extinction of learned associations. In so doing, these data reveal novel neuroanatomical substrates that could be therapeutically targeted for treatment of PTSD.



BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Moritz Herbert Albrecht Köhler ◽  
Gianpaolo Demarchi ◽  
Nathan Weisz

AbstractBackgroundA long-standing debate concerns where in the processing hierarchy of the central nervous system (CNS) selective attention takes effect. In the auditory system, cochlear processes can be influenced via direct and mediated (by the inferior colliculus) projections from the auditory cortex to the superior olivary complex (SOC). Studies illustrating attentional modulations of cochlear responses have so far been limited to sound-evoked responses. The aim of the present study is to investigate intermodal (audiovisual) selective attention in humans simultaneously at the cortical and cochlear level during a stimulus-free cue-target interval.ResultsWe found that cochlear activity in the silent cue-target intervals was modulated by a theta-rhythmic pattern (~ 6 Hz). While this pattern was present independently of attentional focus, cochlear theta activity was clearly enhanced when attending to the upcoming auditory input. On a cortical level, classical posterior alpha and beta power enhancements were found during auditory selective attention. Interestingly, participants with a stronger release of inhibition in auditory brain regions show a stronger attentional modulation of cochlear theta activity.ConclusionsThese results hint at a putative theta-rhythmic sampling of auditory input at the cochlear level. Furthermore, our results point to an interindividual variable engagement of efferent pathways in an attentional context that are linked to processes within and beyond processes in auditory cortical regions.



2021 ◽  
pp. 155005942110262
Author(s):  
Bo Chen

The abnormal cortices of autism spectrum disorder (ASD) brains are uncertain. However, the pathological alterations of ASD brains are distributed throughout interconnected cortical systems. Functional connections (FCs) methodology identifies cooperation and separation characteristics of information process in macroscopic cortical activity patterns under the context of network neuroscience. Embracing the graph theory concepts, this paper introduces eigenvector centrality index (EC score) ground on the FCs, and further develops a new framework for researching the dysfunctional cortex of ASD in holism significance. The important process is to uncover noticeable regions and subsystems endowed with antagonistic stance in EC-scores of 26 ASD boys and 28 matched healthy controls (HCs). For whole brain regional EC scores of ASD boys, orbitofrontal superior medial cortex, insula R, posterior cingulate gyrus L, and cerebellum 9 L are endowed with different EC scores significantly. In the brain subsystems level, EC scores of DMN, prefrontal lobe, and cerebellum are aberrant in the ASD boys. Generally, the EC scores display widespread distribution of diseased regions in ASD brains. Meanwhile, the discovered regions and subsystems, such as MPFC, AMYG, INS, prefrontal lobe, and DMN, are engaged in social processing. Meanwhile, the CBCL externalizing problem scores are associated with EC scores.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rieke Fruengel ◽  
Timo Bröhl ◽  
Thorsten Rings ◽  
Klaus Lehnertz

AbstractPrevious research has indicated that temporal changes of centrality of specific nodes in human evolving large-scale epileptic brain networks carry information predictive of impending seizures. Centrality is a fundamental network-theoretical concept that allows one to assess the role a node plays in a network. This concept allows for various interpretations, which is reflected in a number of centrality indices. Here we aim to achieve a more general understanding of local and global network reconfigurations during the pre-seizure period as indicated by changes of different node centrality indices. To this end, we investigate—in a time-resolved manner—evolving large-scale epileptic brain networks that we derived from multi-day, multi-electrode intracranial electroencephalograpic recordings from a large but inhomogeneous group of subjects with pharmacoresistant epilepsies with different anatomical origins. We estimate multiple centrality indices to assess the various roles the nodes play while the networks transit from the seizure-free to the pre-seizure period. Our findings allow us to formulate several major scenarios for the reconfiguration of an evolving epileptic brain network prior to seizures, which indicate that there is likely not a single network mechanism underlying seizure generation. Rather, local and global aspects of the pre-seizure network reconfiguration affect virtually all network constituents, from the various brain regions to the functional connections between them.



Sign in / Sign up

Export Citation Format

Share Document