retinal thinning
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 44)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 100 (S267) ◽  
Author(s):  
María José Vicente Altabás ◽  
Álvaro Tello Roger ◽  
Luisa Castro Roger ◽  
Elisa Vilades Palomar ◽  
Beatriz Cordón Ciordia ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3343
Author(s):  
Shelby M. Hetzer ◽  
Emily M. Shalosky ◽  
Jordyn N. Torrens ◽  
Nathan K. Evanson

Injury to the optic nerve, termed, traumatic optic neuropathy (TON) is a known comorbidity of traumatic brain injury (TBI) and is now known to cause chronic and progressive retinal thinning up to 35 years after injury. Although animal models of TBI have described the presence of optic nerve degeneration and research exploring acute mechanisms is underway, few studies in humans or animals have examined chronic TON pathophysiology outside the retina. We used a closed-head weight-drop model of TBI/TON in 6-week-old male C57BL/6 mice. Mice were euthanized 7-, 14-, 30-, 90-, and 150-days post-injury (DPI) to assess histological changes in the visual system of the brain spanning a total of 12 regions. We show chronic elevation of FluoroJade-C, indicative of neurodegeneration, throughout the time course. Intriguingly, FJ-C staining revealed a bimodal distribution of mice indicating the possibility of subpopulations that may be more or less susceptible to injury outcomes. Additionally, we show that microglia and astrocytes react to optic nerve damage in both temporally and regionally different ways. Despite these differences, astrogliosis and microglial changes were alleviated between 14–30 DPI in all regions examined, perhaps indicating a potentially critical period for intervention/recovery that may determine chronic outcomes.


Author(s):  
Shelby M. Hetzer ◽  
Emily M. Shalosky ◽  
Jordyn N. Torrens ◽  
Nathan K. Evanson

Injury to the optic nerve, termed, traumatic optic neuropathy (TON) is a known comorbidity of traumatic brain injury (TBI) and is now known to cause chronic and progressive retinal thinning up to 35 years after injury. Although animal models of TBI have described the presence of optic nerve degeneration and research exploring acute mechanisms is underway, few studies in humans or animals have examined chronic TON pathophysiology outside the retina. We used a closed-head weight-drop model of TBI/TON in 6-week-old male C57BL/6 mice. Mice were euthanized 7-, 14-, 30-, 90-, and 150-days post injury (DPI) to assess histological changes in the visual system of the brain spanning a total of 12 regions. We show chronic elevation of FluoroJade-C, indicative of neurodegeneration, throughout the time course. Intriguingly, FJ-C staining revealed a bimodal distribution of mice indicating the possibility of subpopulations that may be more or less sus-ceptible to injury outcomes. Additionally, we show that microglia and astrocytes react to optic nerve damage in both temporally and regionally different ways. Despite these differences, as-trogliosis and microglial changes were alleviated between 14-30 DPI in all regions examined, perhaps indicating a potential critical period for intervention/recovery that may determine chronic outcomes.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Domino K Schlegel ◽  
Srinivasagan Ramkumar ◽  
Johannes von Lintig ◽  
Stephan CF Neuhauss

The RLBP1 gene encodes the 36 kDa cellular retinaldehyde binding protein, CRALBP, a soluble retinoid carrier, in the visual cycle of the eyes. Mutations in RLBP1 are associated with recessively inherited clinical phenotypes, including Bothnia dystrophy, retinitis pigmentosa, retinitis punctata albescens, fundus albipunctatus, and Newfoundland rod-cone dystrophy. However, the etiology of these retinal disorders is not well understood. Here, we generated homologous zebrafish models to bridge this knowledge gap. Duplication of the rlbp1 gene in zebrafish and cell-specific expression of the paralogs rlbp1a in the retinal pigment epithelium and rlbp1b in Müller glial cells allowed us to create intrinsically cell type-specific knockout fish lines. Using rlbp1a and rlbp1b single and double mutants, we investigated the pathological effects on visual function. Our analyses revealed that rlbp1a was essential for cone photoreceptor function and chromophore metabolism in the fish eyes. rlbp1a mutant fish displayed reduced chromophore levels and attenuated cone photoreceptor responses to light stimuli. They accumulated 11-cis and all-trans-retinyl esters which displayed as enlarged lipid droplets in the RPE reminiscent of the subretinal yellow-white lesions in patients with RLBP1 mutations. During aging, these fish developed retinal thinning and cone and rod photoreceptor dystrophy. In contrast, rlbp1b mutants did not display impaired vision. The double mutant essentially replicated the phenotype of the rlbp1a single mutant. Together, our study showed that the rlbp1a zebrafish mutant recapitulated many features of human blinding diseases caused by RLBP1 mutations and provided novel insights into the pathways for chromophore regeneration of cone photoreceptors.


2021 ◽  
Author(s):  
Avan Sabir Rashid ◽  
Darian Rashid ◽  
Ge Yang ◽  
Hans Link ◽  
Helena Gauffin ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Jingyuan Zhu ◽  
Anoop Sainulabdeen ◽  
Krystal Akers ◽  
Vishnu Adi ◽  
Jeffrey R. Sims ◽  
...  

Purpose: Intraocular pressure (IOP) is currently the only modifiable risk factor for glaucoma, yet glaucoma can continue to progress despite controlled IOP. Thus, development of glaucoma neurotherapeutics remains an unmet need. Scutellarin is a flavonoid that can exert neuroprotective effects in the eye and brain. Here, we investigated the neurobehavioral effects of scutellarin treatment in a chronic IOP elevation model.Methods: Ten adult C57BL/6J mice were unilaterally injected with an optically clear hydrogel into the anterior chamber to obstruct aqueous outflow and induce chronic IOP elevation. Eight other mice received unilateral intracameral injection of phosphate-buffered saline only. Another eight mice with hydrogel-induced unilateral chronic IOP elevation also received daily oral gavage of 300 mg/kg scutellarin. Tonometry, optical coherence tomography, and optokinetics were performed longitudinally for 4 weeks to monitor the IOP, retinal nerve fiber layer thickness, total retinal thickness, visual acuity, and contrast sensitivity of both eyes in all three groups.Results: Intracameral hydrogel injection resulted in unilateral chronic IOP elevation with no significant inter-eye IOP difference between scutellarin treatment and untreated groups. Upon scutellarin treatment, the hydrogel-injected eyes showed less retinal thinning and reduced visual behavioral deficits when compared to the untreated, hydrogel-injected eyes. No significant difference in retinal thickness or optokinetic measures was found in the contralateral, non-treated eyes over time or between all groups.Conclusion: Using the non-invasive measuring platform, oral scutellarin treatment appeared to preserve retinal structure and visual function upon chronic IOP elevation in mice. Scutellarin may be a novel neurotherapeutic agent for glaucoma treatment.


2021 ◽  
Vol 22 (13) ◽  
pp. 7234
Author(s):  
Céline Koster ◽  
Koen T. van den Hurk ◽  
Colby F. Lewallen ◽  
Mays Talib ◽  
Jacoline B. ten Brink ◽  
...  

Purpose: We developed and phenotyped a pigmented knockout rat model for lecithin retinol acyltransferase (LRAT) using CRISPR/Cas9. The introduced mutation (c.12delA) is based on a patient group harboring a homologous homozygous frameshift mutation in the LRAT gene (c.12delC), causing a dysfunctional visual (retinoid) cycle. Methods: The introduced mutation was confirmed by DNA and RNA sequencing. The expression of Lrat was determined on both the RNA and protein level in wildtype and knockout animals using RT-PCR and immunohistochemistry. The retinal structure and function, as well as the visual behavior of the Lrat−/− and control rats, were characterized using scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), electroretinography (ERG) and vision-based behavioral assays. Results: Wildtype animals had high Lrat mRNA expression in multiple tissues, including the eye and liver. In contrast, hardly any expression was detected in Lrat−/− animals. LRAT protein was abundantly present in wildtype animals and absent in Lrat−/− animals. Lrat−/− animals showed progressively reduced ERG potentials compared to wildtype controls from two weeks of age onwards. Vison-based behavioral assays confirmed reduced vision. Structural abnormalities, such as overall retinal thinning, were observed in Lrat−/− animals. The retinal thickness in knockout rats was decreased to roughly 80% by four months of age. No functional or structural differences were observed between wildtype and heterozygote animals. Conclusions: Our Lrat−/− rat is a new animal model for retinal dystrophy, especially for the LRAT-subtype of early-onset retinal dystrophies. This model has advantages over the existing mouse models and the RCS rat strain and can be used for translational studies of retinal dystrophies.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11665
Author(s):  
Deokho Lee ◽  
Heonuk Jeong ◽  
Yukihiro Miwa ◽  
Ari Shinojima ◽  
Yusaku Katada ◽  
...  

Background Retinal ischemic stresses are associated with the pathogenesis of various retinal vascular diseases. To investigate pathological mechanisms of retinal ischemia, reproducible, robust and clinically significant experimental rodent models are highly needed. Previously, we established a stable murine model of chronic hypoperfusion retinal injuries by permanent unilateral common carotid artery occlusion (UCCAO) and demonstrated chronic pathological processes in the ischemic retina after the occlusion; however, retinal functional deficits and other acute retinal ischemic injuries by UCCAO still remain obscure. In this study, we attempted to examine retinal functional changes as well as acute retinal ischemic alterations such as retinal thinning, gliosis and cell death after UCCAO. Methods Adult mice (male C57BL/6, 6–8 weeks old) were subjected to UCCAO in the right side, and retinal function was primarily measured using electroretinography for 14 days after the surgery. Furthermore, retinal thinning, gliosis and cell death were investigated using optical coherence tomography, immunohistochemistry and TUNEL assay, respectively. Results Functional deficits in the unilateral right retina started to be seen 7 days after the occlusion. Specifically, the amplitude of b-wave dramatically decreased while that of a-wave was slightly affected. 14 days after the occlusion, the amplitudes of both waves and oscillatory potentials were significantly detected decreased in the unilateral right retina. Even though a change in retinal thickness was not dramatically observed among all the eyes, retinal gliosis and cell death in the unilateral right retina were substantially observed after UCCAO. Conclusions Along with previous retinal ischemic results in this model, UCCAO can stimulate retinal ischemia leading to functional, morphological and molecular changes in the retina. This model can be useful for the investigation of pathological mechanisms for human ischemic retinopathies and furthermore can be utilized to test new drugs for various ischemic ocular diseases.


2021 ◽  
Author(s):  
Domino K. Schlegel ◽  
Srinivasagan Ramkumar ◽  
Johannes von Lintig ◽  
Stephan C.F. Neuhauss

The RLBP1 gene encodes the 36 kDa cellular retinaldehyde binding protein, CRALBP, a soluble retinoid carrier, in the visual cycle of the eyes. Mutations in RLBP1 are associated with recessively inherited clinical phenotypes, including Bothnia dystrophy, retinitis pigmentosa, retinitis punctata albescens, fundus albipunctatus, and Newfoundland rod-cone dystrophy. However, the etiology of these retinal disorders is not well understood. Here, we generated homologous zebrafish models to bridge this knowledge gap. Duplication of the rlbp1 gene in zebrafish and cell-specific expression of the paralogs rlbp1a in the retinal pigment epithelium and rlbp1b in Mueller glial cells allowed us to create intrinsically cell type-specific knockout fish lines. Using rlbp1a and rlbp1b single and double mutants, we investigated the pathological effects on visual function. Our analyses revealed that rlbp1a was essential for cone photoreceptor function and chromophore metabolism in the fish eyes. rlbp1a mutant fish displayed reduced chromophore levels and attenuated cone photoreceptor responses to light stimuli. They accumulated 11-cis and all-trans-retinyl esters which displayed as enlarged lipid droplets in the RPE reminiscent of the subretinal yellow-white lesions in patients with RLBP1 mutations. During aging, these fish developed retinal thinning and cone and rod photoreceptor dystrophy. In contrast, rlbp1b mutants did not display impaired vision. The double mutant essentially replicated the phenotype of the rlbp1a single mutant. Together, our study showed that the rlbp1a zebrafish mutant recapitulated many features of human blinding diseases caused by RLBP1 mutations and provided novel insights into the pathways for chromophore regeneration of cone photoreceptors.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252825
Author(s):  
Susanne Hopf ◽  
Julia B. Hennermann ◽  
Alexander K. Schuster ◽  
Norbert Pfeiffer ◽  
Susanne Pitz

Introduction Niemann-Pick type C (NPC) is a lysosomal storage disease that is progressive and life-limiting, with an estimated incidence of 1:120,000 live births. In addition to systemic manifestation with (hepato-)splenomegaly, there are a number of neurological manifestations (ataxia, dysarthria, dementia, cataplexy, epileptic seizures, and psychiatric disorders). Characteristic is vertical supranuclear gaze palsy, which is often overlooked. Early diagnosis and start of therapy improve quality of life. This study aimed to characterize oculomotor dysfunction of NPC patients, and to provide ophthalmologic data including retinal imaging. Methods Eighteen patients with biochemically or genetically diagnosed NPC completed oculomotor and ophthalmologic examination. Ten of them performed saccadometry by infrared based video-oculography. Saccadic parameters were compared to 100 healthy controls, and were correlated with clinical variables. Another subgroup of eight patients received optical coherence tomography (OCT) of the optic disc and the macula, of which the segmented layers were analysed using a crude linear mixed model, and one adjusted for age, sex, and spherical equivalent. Results Saccadometry revealed slowed peak velocity compared to controls most evident vertically. Peak velocity correlated negatively with SARA-Score, but correlation with clinical assessment of saccades was not significant. Clinical features in the assessment of vertical saccades were intensive blinking and head movements to initiate gaze changes, and lateral trajectory of the eyes. Macular OCT revealed significant total retinal thinning in the fovea, specifically of the outer nuclear layer and outer retinal layer. Para- and perifoveal retinal thicknesses, as well as peripapillary retinal nerve fibre layer were normal. Conclusions Foveal thinning was revealed in NPC. It remains to be shown, whether OCT will prove to be useful to monitor progression. Saccadic impairment reflects CNS involvement and therefore is a parameter to demonstrate the progression of NPC, and potentially also the efficacy of new therapies. Saccadometry, in contrast to clinical investigation, allows the precise evaluation of saccades.


Sign in / Sign up

Export Citation Format

Share Document