scholarly journals A Mild Phenotype Caused by Two Novel Compound Heterozygous Mutations in CEP290

Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1240
Author(s):  
Agnieszka Rafalska ◽  
Anna M. Tracewska ◽  
Anna Turno-Kręcicka ◽  
Milena J. Szafraniec ◽  
Marta Misiuk-Hojło

CEP290 is a ciliary gene frequently mutated in ciliopathies, resulting in a broad range of phenotypes, ranging from isolated inherited retinal disorders (IRDs) to severe or lethal syndromes with multisystemic involvement. Patients with non-syndromic CEP290-linked disease experience profound and early vision loss due to cone-rod dystrophy, as in Leber congenital amaurosis. In this case report, we describe two novel loss-of-function heterozygous alterations in the CEP290 gene, discovered in a patient suffering from retinitis pigmentosa using massive parallel sequencing of a molecular inversion probes library constructed for 108 genes involved in IRDs. A milder phenotype than expected was found in the individual, which serves to prove that some CEP290-associated disorders may display preserved cone function.

2021 ◽  
Author(s):  
Man-chun Ting ◽  
D’Juan T. Farmer ◽  
Camilla S. Teng ◽  
Jinzhi He ◽  
Yang Chai ◽  
...  

AbstractA major feature of Saethre-Chotzen syndrome is coronal craniosynostosis, the fusion of the frontal and parietal bones at the coronal suture. It is caused by heterozygous loss-of-function mutations in the basic HLH transcription factorsTWIST1andTCF12. While compound heterozygousTcf12; Twist1mice display severe coronal synostosis, the individual role ofTcf12has remained unexplored. Here we show that Tcf12 controls several key processes in calvarial development, including the rate of frontal and parietal bone growth, and the boundary between sutural and osteogenic cells. Genetic analysis supports an embryonic requirement forTcf12in suture formation, as combined deletion ofTcf12in the embryonic neural crest and mesoderm, but not in the postnatal suture mesenchyme, disrupts the coronal suture. We also detect asymmetric distribution of Grem1 + mesenchymal cells on opposing sides of the wild-type frontal and parietal bones, which prefigures later bone overlap at the sutures. InTcf12mutants, reduced asymmetry correlates with lack of bone overlap. Our results indicate a largely embryonic function of Tcf12 in controlling the rate and asymmetrical growth of calvarial bones and establishment of suture boundaries, which together ensure the proper formation of the overlapping coronal suture.


Development ◽  
2021 ◽  
Author(s):  
Man-chun Ting ◽  
D'Juan T. Farmer ◽  
Camilla S. Teng ◽  
Jinzhi He ◽  
Yang Chai ◽  
...  

A major feature of Saethre-Chotzen syndrome is coronal craniosynostosis, the fusion of the frontal and parietal bones at the coronal suture. It is caused by heterozygous loss-of-function mutations in either of the basic HLH transcription factors TWIST1 and TCF12. While compound heterozygous Tcf12; Twist1 mice display severe coronal synostosis, the individual role of Tcf12 had remained unexplored. Here we show that Tcf12 controls several key processes in calvarial development, including the rate of frontal and parietal bone growth, and the boundary between sutural and osteogenic cells. Genetic analysis supports an embryonic requirement for Tcf12 in suture formation, as combined deletion of Tcf12 in embryonic neural crest and mesoderm, but not in postnatal suture mesenchyme, disrupts the coronal suture. We also detect asymmetric distribution of mesenchymal cells on opposing sides of the wild-type frontal and parietal bones, which prefigures later bone overlap at the sutures. In Tcf12 mutants, reduced asymmetry is associated with bones meeting end-on-end, possibly contributing to synostosis. Our results support embryonic requirements of Tcf12 in proper formation of the overlapping coronal suture.


Author(s):  
Paolo Zanoni ◽  
Katharina Steindl ◽  
Deepanwita Sengupta ◽  
Pascal Joset ◽  
Angela Bahr ◽  
...  

Abstract Purpose Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf–Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. Methods We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. Results The core NSD2-associated phenotype includes mostly mild developmental delay, prenatal-onset growth retardation, low body mass index, and characteristic facial features distinct from WHS. Patients carrying missense variants were significantly taller and had more frequent behavioral/psychological issues compared with those harboring truncating variants. Structural in silico modeling suggested interference with NSD2’s folding and function for all missense variants in known structures. In vitro testing showed reduced methylation activity and failure to reconstitute H3K36me2 in NSD2 knockout cells for most missense variants. Conclusion NSD2 loss-of-function variants lead to a distinct, rather mild phenotype partially overlapping with WHS. To avoid confusion for patients, NSD2 deficiency may be named Rauch–Steindl syndrome after the delineators of this phenotype.


Medicina ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 123
Author(s):  
Cigdem Yuce Kahraman ◽  
Ali Islek ◽  
Abdulgani Tatar ◽  
Özlem Özdemir ◽  
Adil Mardinglu ◽  
...  

Wilson disease (WD) (OMIM# 277900) is an autosomal recessive inherited disorder characterized by excess copper (Cu) storage in different human tissues, such as the brain, liver, and the corneas of the eyes. It is a rare disorder that occurs in approximately 1 in 30,000 individuals. The clinical presentations of WD are highly varied, primarily consisting of hepatic and neurological conditions. WD is caused by homozygous or compound heterozygous mutations in the ATP7B gene. The diagnosis of the disease is complicated because of its heterogeneous phenotypes. The molecular genetic analysis encourages early diagnosis, treatment, and the opportunity to screen individuals at risk in the family. In this paper, we reported a case with a novel, hotspot-located mutation in WD. We have suggested that this mutation in the ATP7B gene might contribute to liver findings, progressing to liver failure with a loss of function effect. Besides this, if patients have liver symptoms in childhood and/or are children of consanguineous parents, WD should be considered during the evaluation of the patients.


Neurosurgery ◽  
2010 ◽  
Vol 67 (3) ◽  
pp. 663-674 ◽  
Author(s):  
Kartik G. Krishnan ◽  
Gabriele Schackert ◽  
Volker Seifert

Abstract BACKGROUND The functions of the human face are not only of esthetic significance but also extend into metaphoric nuances of psychology. The loss of function of one or both facial nerves has a remarkable impact on patients' lives. OBJECTIVE To retrospectively analyze the functional outcomes of microneurovascular facial reanimation using masseteric innervation. METHODS Seventeen patients with irreparable facial paralysis resulting from benign lesions involving the facial nuclei (n = 14) or Möbius syndrome (n = 3) were treated with free muscle flaps for oral commissural reanimation using ipsilateral masseteric innervation and using temporalis muscle transfer for eyelid reanimation. Results were analyzed by the absolute commissural excursion and commissural excursion index and by a patient self-evaluation score. Presence of synkinesis was documented. Follow-up ranged from 8 to 48 months (mean, 26.4 months). RESULTS Normalization of the commissural excursion index was observed in 8 of 17 patients (47%), an improvement was seen in 7 of 17 (41%), and failure was observed in 2 of 17 (12%). The individual dynamics of absolute commissural excursion and commissural excursion index changes are presented. A natural smiling response was observed in 10 of 17 patients (59%) but not in the remaining 7 (41%). This response reflected the patient's ability to relay the natural emotion of smiling through the masseteric nerve. Patients' self-evaluation scores were a level higher than objective indices. CONCLUSIONS Innervation of free muscle flaps with the masseteric nerve for oral commissure reanimation might play an important role in patients with lesions of the facial nuclei (as in Möbius syndrome). Synkinesis persists for long periods after surgery. However, most of the patients learned to express their emotions by overcoming this phenomenon. Despite hypercorrection or inadequate correction, patients evaluated themselves favorably.


Author(s):  
Annika Winbo ◽  
Suganeya Ramanan ◽  
Emily Eugster ◽  
Annika Rydberg ◽  
Stefan Jovinge ◽  
...  

Sympathetic activation is an established trigger of life-threatening cardiac events in long QT syndrome type 1 (LQT1). KCNQ1 loss-of-function variants, which underlie LQT1, have been associated with both cardiac arrhythmia and neuronal hyperactivity pathologies. However, the LQT1 sympathetic neuronal phenotype is unknown. Here we aimed to study human induced pluripotent stem cell (hiPSC)-derived sympathetic neurons (SNs) to evaluate neuronal functional phenotype in LQT1. We generated hiPSC-SNs from two LQT1 patients with a history of sympathetically triggered arrhythmia and KCNQ1 loss-of-function genotypes (c.781_782delinsTC and p.S349W/p.R518X). Characterisation of hiPSC-SNs was performed using immunohistochemistry, enzyme-linked immunosorbent assay and whole-cell patch clamp electrophysiology, and functional LQT1 hiPSC-SN phenotypes compared to healthy control (WT) hiPSC-SNs. hiPSC-SNs stained positive for tyrosine hydroxylase, peripherin, KCNQ1, and secreted noradrenaline. hiPSC-SNs at 60±2.2 days in vitro had healthy resting membrane potentials (-60±1.3 mV), and fired rapid action potentials with mature kinetics in response to stimulation. Significant hyperactivity in LQT1 hiPSC-SNs was evident via increased noradrenaline release, increased spontaneous action potential frequency, increased total inward current density, and reduced afterhyperpolarisation, compared to age-matched WT hiPSC-SNs. A significantly higher action potential frequency upon current injection and larger synaptic current amplitudes in compound heterozygous p.S349W/p.R518X hiPSC-SNs compared to heterozygous c.781_782delinsTC hiPSC-SNs was also observed, suggesting a potential genotype-phenotype correlation. Together our data reveal increased neurotransmission and excitability in heterozygous and compound heterozygous patient-derived LQT1 sympathetic neurons, suggesting that the cellular arrhythmogenic potential in LQT1 is not restricted to cardiomyocytes.


Author(s):  
Pradeep Vasudevan ◽  
Corrina Powell ◽  
Adeline K Nicholas ◽  
Ian Scudamore ◽  
James Greening ◽  
...  

Summary In the absence of maternal thyroid disease or iodine deficiency, fetal goitre is rare and usually attributable to dyshormonogenesis, for which genetic ascertainment is not always undertaken in the UK. Mechanical complications include tracheal and oesophageal compression with resultant polyhydramnios, malpresentation at delivery and neonatal respiratory distress. We report an Indian kindred in which the proband (first-born son) had congenital hypothyroidism (CH) without obvious neonatal goitre. His mother’s second pregnancy was complicated by fetal hypothyroid goitre and polyhydramnios, prompting amniotic fluid drainage and intraamniotic therapy (with liothyronine, T3 and levothyroxine, T4). Sadly, intrauterine death occurred at 31 weeks. Genetic studies in the proband demonstrated compound heterozygous novel (c.5178delT, p.A1727Hfs*26) and previously described (c.7123G > A, p.G2375R) thyroglobulin (TG) mutations which are the likely cause of fetal goitre in the deceased sibling. TG mutations rarely cause fetal goitre, and management remains controversial due to the potential complications of intrauterine therapy however an amelioration in goitre size may be achieved with intraamniotic T4, and intraamniotic T3/T4 combination has achieved a favourable outcome in one case. A conservative approach, with surveillance, elective delivery and commencement of levothyroxine neonatally may also be justified, although intubation may be required post delivery for respiratory obstruction. Our observations highlight the lethality which may be associated with fetal goitre. Additionally, although this complication may recur in successive pregnancies, our case highlights the possibility of discordance for fetal goitre in siblings harbouring the same dyshormonogenesis-associated genetic mutations. Genetic ascertainment may facilitate prenatal diagnosis and assist management in familial cases. Learning points: CH due to biallelic, loss-of-function TG mutations is well-described and readily treatable in childhood however mechanical complications from associated fetal goitre may include polyhydramnios, neonatal respiratory compromise and neck hyperextension with dystocia complicating delivery. CH due to TG mutations may manifest with variable phenotypes, even within the same kindred. Treatment options for hypothyroid dyshormogenic fetal goitre in a euthyroid mother include intraamniotic thyroid hormone replacement in cases with polyhydramnios or significant tracheal obstruction. Alternatively, cases may be managed conservatively with radiological surveillance, elective delivery and neonatal levothyroxine treatment, although intubation and ventilation may be required to support neonatal respiratory compromise. Genetic ascertainment in such kindreds may enable prenatal diagnosis and anticipatory planning for antenatal management of further affected offspring.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lukasz M. Milanowski ◽  
Olajumoke Oshinaike ◽  
Benjamin J. Broadway ◽  
Jennifer A. Lindemann ◽  
Alexandra I. Soto-Beasley ◽  
...  

Introduction: Nigeria is one of the most populated countries in the world; however, there is a scarcity of studies in patients with age-related neurodegenerative diseases, such as Parkinson disease (PD). The aim of this study was to screen patients with PD including a small cohort of early-onset PD (EOPD) cases from Nigeria for PRKN, PINK1, DJ1, SNCA multiplication, and LRRK2 p.G2019S.Methods: We assembled a cohort of 109 Nigerian patients with PD from the four main Nigerian tribes: Yoruba, Igbo, Edo, and Hausa. Fifteen cases [14 from the Yoruba tribe (93.3%)] had EOPD (defined as age-at-onset <50 years). All patients with EOPD were sequenced for the coding regions of PRKN, PINK1, and DJ1. Exon dosage analysis was performed with a multiplex ligation-dependent probe amplification assay, which also included a SNCA probe and LRRK2 p.G2019S. We screened for LRRK2 p.G2019S in the entire PD cohort using a genotyping assay. The PINK1 p.R501Q functional analysis was conducted.Results: In 15 patients with EOPD, 22 variants were observed [PRKN, 9 (40.9%); PINK1, 10 (45.5%); and DJ1, 3 (13.6%)]. Three (13.6%) rare, nonsynonymous variants were identified, but no homozygous or compound heterozygous carriers were found. No exonic rearrangements were present in the three genes, and no carriers of SNCA genomic multiplications or LRRK2 p.G2019S were identified. The PINK1 p.R501Q functional analysis revealed pathogenic loss of function.Conclusion: More studies on age-related neurodegenerative diseases are needed in sub-Saharan African countries, including Nigeria. Population-specific variation may provide insight into the genes involved in PD in the local population but may also contribute to larger studiesperformed in White and Asian populations.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247683
Author(s):  
Joseph A. Johnston ◽  
David R. Nelson ◽  
Pallav Bhatnagar ◽  
Sarah E. Curtis ◽  
Yu Chen ◽  
...  

Essential fructosuria (EF) is a benign, asymptomatic, autosomal recessive condition caused by loss-of-function variants in the ketohexokinase gene and characterized by intermittent appearance of fructose in the urine. Despite a basic understanding of the genetic and molecular basis of EF, relatively little is known about the long-term clinical consequences of ketohexokinase gene variants. We examined the frequency of ketohexokinase variants in the UK Biobank sample and compared the cardiometabolic profiles of groups of individuals with and without these variants alone or in combination. Study cohorts consisted of groups of participants defined based on the presence of one or more of the five ketohexokinase gene variants tested for in the Affymetrix assays used by the UK Biobank. The rs2304681:G>A (p.Val49Ile) variant was present on more than one-third (36.8%) of chromosomes; other variant alleles were rare (<1%). No participants with the compound heterozygous genotype present in subjects exhibiting the EF phenotype in the literature (Gly40Arg/Ala43Thr) were identified. The rs2304681:G>A (p.Val49Ile), rs41288797 (p.Val188Met), and rs114353144 (p.Val264Ile) variants were more common in white versus non-white participants. Otherwise, few statistically or clinically significant differences were observed after adjustment for multiple comparisons. These findings reinforce the current understanding of EF as a rare, benign, autosomal recessive condition.


Sign in / Sign up

Export Citation Format

Share Document