scholarly journals Θ-SEIHRD mathematical model of Covid19-stability analysis using fast-slow decomposition

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10019
Author(s):  
OPhir Nave ◽  
Israel Hartuv ◽  
Uziel Shemesh

In general, a mathematical model that contains many linear/nonlinear differential equations, describing a phenomenon, does not have an explicit hierarchy of system variables. That is, the identification of the fast variables and the slow variables of the system is not explicitly clear. The decomposition of a system into fast and slow subsystems is usually based on intuitive ideas and knowledge of the mathematical model being investigated. In this study, we apply the singular perturbed vector field (SPVF) method to the COVID-19 mathematical model of to expose the hierarchy of the model. This decomposition enables us to rewrite the model in new coordinates in the form of fast and slow subsystems and, hence, to investigate only the fast subsystem with different asymptotic methods. In addition, this decomposition enables us to investigate the stability analysis of the model, which is important in case of COVID-19. We found the stable equilibrium points of the mathematical model and compared the results of the model with those reported by the Chinese authorities and found a fit of approximately 96 percent.

2020 ◽  
Vol 8 (2) ◽  
pp. 61-68
Author(s):  
Victor Akinsola ◽  
ADEYEMI BINUYO

In this paper, a mathematical model of the transmission dynamics of corruption among populace is analyzed. The corruption free equilibrium state, characteristic equation and Eigen values of the corruption model were obtained. The basic reproductive number of the corruption model was also determined using the next generation operator technique at the corruption free equilibrium points. The condition for the stability of the corruption free equilibrium state was determined. The local stability analysis of the mathematical model of corruption was done and the results were presented and discussed accordingly. Recommendations were made from the results on measures to reduce the rate of corrupt practices among the populace.   


2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


2013 ◽  
Vol 291-294 ◽  
pp. 1934-1939
Author(s):  
Jian Jun Peng ◽  
Yan Jun Liu ◽  
Yu Li ◽  
Ji Bin Liu

This thesis put forward a hydraulic wave simulation system based on valve-controlled cylinder hydraulic system, which simulated wave movement on the land. The mathematical model of valve-controlled symmetric cylinder was deduced and the mathematical models of servo valve, displacement sensor and servo amplifier were established according to the schematic diagram of the hydraulic system designed, on the basis of which the mathematical model of hydraulic wave simulation system was obtained. Then the stability of the system was analyzed. The results indicated that the system was reliable.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 531
Author(s):  
Pedro M. Vallejo LLamas ◽  
Pastora Vega

This paper presents a procedure for the closed-loop stability analysis of a certain variant of the strategy called Fuzzy Model-Based Predictive Control (FMBPC), with a model of the Takagi-Sugeno type, applied to the wastewater treatment process known as the Activated Sludge Process (ASP), with the aim of simultaneously controlling the substrate concentration in the effluent (one of the main variables that should be limited according to environmental legislations) and the biomass concentration in the reactor. This case study was chosen both for its environmental relevance and for special process characteristics that are of great interest in the field of nonlinear control, such as strong nonlinearity, multivariable nature, and its complex dynamics, a consequence of its biological nature. The stability analysis, both of fuzzy systems (FS) and the very diverse existing strategies of nonlinear predictive control (NLMPC), is in general a mathematically laborious task and difficult to generalize, especially for processes with complex dynamics. To try to minimize these difficulties, in this article, the focus was placed on the mathematical simplification of the problem, both with regard to the mathematical model of the process and the stability analysis procedures. Regarding the mathematical model, a state-space model of discrete linear time-varying (DLTV), equivalent to the starting fuzzy model (previously identified), was chosen as the base model. Furthermore, in a later step, the DLTV model was approximated to a local model of type discrete linear time-invariant (DLTI). As regards the stability analysis itself, a computational method was developed that greatly simplified this difficult task (in a local environment of an operating point), compared to other existing methods in the literature. The use of the proposed method provides useful conclusions for the closed-loop stability analysis of the considered FMBPC strategy, applied to an ASP process; at the same time, the possibility that the method may be useful in a more general way, for similar fuzzy and predictive strategies, and for other complex processes, was observed.


2020 ◽  
Vol 17 (2) ◽  
pp. 267-279
Author(s):  
Syamsir Muaraf ◽  
Syamsuddin Toaha ◽  
Kasbawati Kasbawati

This article examines the mathematical model of divorce. This model consists of four population classes, namely the Married class (M), the population class who experiences separation of separated beds (S), the population class who is divorced by Divorce (D), and the population class who experiences depression or stress due to divorce Hardship (H). This study focuses on the stability analysis of divorce-free and endemic equilibrium points. Local stability was analyzed using linearization and eigenvalues ​​methods. In addition, the basic reproduction number  is provided via the next generation matrix method. The existence and stability of the equilibrium point are determined from . The results showed that the rate of interaction between population M and populations other than H is very influential on efforts to minimize divorce. Divorce can be minimized when the transmission rate is reduced to . Reducing the transmission rate and increasing the rate of transfer from split bed class to married class can turn divorce endemic cases into non-endemic cases. A numerical simulation is given to confirm the analysis results.


2015 ◽  
Vol 12 (07) ◽  
pp. 1550081 ◽  
Author(s):  
Tiberiu Harko ◽  
Chor Yin Ho ◽  
Chun Sing Leung ◽  
Stan Yip

We perform the study of the stability of the Lorenz system by using the Jacobi stability analysis, or the Kosambi–Cartan–Chern (KCC) theory. The Lorenz model plays an important role for understanding hydrodynamic instabilities and the nature of the turbulence, also representing a nontrivial testing object for studying nonlinear effects. The KCC theory represents a powerful mathematical method for the analysis of dynamical systems. In this approach, we describe the evolution of the Lorenz system in geometric terms, by considering it as a geodesic in a Finsler space. By associating a nonlinear connection and a Berwald type connection, five geometrical invariants are obtained, with the second invariant giving the Jacobi stability of the system. The Jacobi (in)stability is a natural generalization of the (in)stability of the geodesic flow on a differentiable manifold endowed with a metric (Riemannian or Finslerian) to the non-metric setting. In order to apply the KCC theory, we reformulate the Lorenz system as a set of two second-order nonlinear differential equations. The geometric invariants associated to this system (nonlinear and Berwald connections), and the deviation curvature tensor, as well as its eigenvalues, are explicitly obtained. The Jacobi stability of the equilibrium points of the Lorenz system is studied, and the condition of the stability of the equilibrium points is obtained. Finally, we consider the time evolution of the components of the deviation vector near the equilibrium points.


Author(s):  
Purvi M. Pandya ◽  
Ekta N. Jayswal ◽  
Yash Shah

Smoking tobacco has some hazardous implications on an individual's physical, physiological, and psychological health; health of the passive smokers near him or her; and on the surrounding environment. From carcinomas to auto-immune disorders, smoking has a role to play. Therefore, there arises a need to frame a systemic pathway to decipher relationship between smoking and a perilous disease such as tuberculosis. This research work focuses on how drugs or medications can affect individuals who are susceptible to tuberculosis because of smoking habits and also on individuals who have already developed symptoms of tuberculosis due to their smoking addiction. The mathematical model is formulated using non-linear ordinary differential equations, and then threshold is calculated for different equilibrium points using next generation matrix method. Stability analysis along with numerical simulations are carried out to validate the data.


2016 ◽  
Vol 13 (07) ◽  
pp. 1650098 ◽  
Author(s):  
M. K. Gupta ◽  
C. K. Yadav

We study the Rikitake system through the method of differential geometry, i.e. Kosambi–Cartan–Chern (KCC) theory for Jacobi stability analysis. For applying KCC theory we reformulate the Rikitake system as two second-order nonlinear differential equations. The five KCC invariants are obtained which express the intrinsic properties of nonlinear dynamical system. The deviation curvature tensor and its eigenvalues are obtained which determine the stability of the system. Jacobi stability of the equilibrium points is studied and obtain the conditions for stability. We study the dynamics of Rikitake system which shows the chaotic behaviour near the equilibrium points.


Author(s):  
Atanyi Yusuf Emmanuel ◽  
Abam Ayeni Omini

A mathematical model to eliminate malaria by breaking the life cycle of anopheles mosquito using copepods at larva stage and tadpoles at pupa stage was derived aimed at eradicating anopheles pupa mosquito by introduction of natural enemies “copepods and tadpoles” (an organism that eats up mosquito at larva and pupa stage respectively). The model equations were derived using the model parameters and variables. The stability analysis of the free equilibrium states was analyzed using equilibrium points of Beltrami and Diekmann’s conditions for stability analysis of steady state. We observed that the model free equilibrium state is stable which implies that the equilibrium point or steady state is stable and the stability of the model means, there will not be anopheles adult mosquito in our society for malaria transmission. The ideas of Beltrami’s and Diekmann conditions revealed that the determinant and trace of the Jacobian matrix were greater than zero and less than zero respectively implying that the model disease free equilibrium state is stable. Hence, the number of larva that transforms to pupa is almost zero while the pupa that develop to adult is zero meaning the life-cycle is broken at the larva and pupa stages with the introduction of natural enemy. Maple was used for the symbolic and numerical solutions.


In this paper, we introduce the mathematical model that represents the quantity and population dynamics on the coconut farm. The model encompasses the number of coconuts and population of squirrels, barn owls, and squirrel hunters. We study the fundamental properties of the model that include positivity, boundedness, and equilibrium points. We also investigate the effect of the time delay on the stability of the equilibrium points. The results of the analysis show that when the time delay reaches its critical value, the interior equilibrium point lost its stability, and there occurs the Hopf bifurcation.


Sign in / Sign up

Export Citation Format

Share Document