dry edible bean
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 1)

Plant Disease ◽  
2021 ◽  
Author(s):  
William Underwood ◽  
Michelle A. Gilley ◽  
Christopher G. Misar ◽  
Thomas J. Gulya ◽  
Gerald J. Seiler ◽  
...  

The necrotrophic fungal pathogen Sclerotinia sclerotiorum can cause disease on numerous plant species, including many important crops. Most S. sclerotiorum-incited diseases of crop plants are initiated by airborne ascospores produced when fungal sclerotia germinate to form spore-bearing apothecia. However, basal stalk rot of sunflower occurs when S. sclerotiorum sclerotia germinate to form mycelia within the soil which subsequently invade sunflower roots. To determine if other plant species in the Asteraceae family are susceptible to root infection by S. sclerotiorum, cultivated sunflower (Helianthus annuus L.) and seven other Asteraceae species were evaluated for S. sclerotiorum root infection by inoculation with either sclerotia or mycelial inoculum. Additionally, root susceptibility of sunflower was compared to that of dry edible bean and canola, two plant species susceptible to S. sclerotiorum but not known to display root-initiated infections. Results indicated that multiple Asteraceae family plants are susceptible to S. sclerotiorum root infection after inoculation with either sclerotia or mycelium. These observations expand the range of plant hosts susceptible to S. sclerotiorum root infection, elucidate differences in root inoculation methodology, and emphasize the importance of soil-borne infection to Asteraceae crop and weed species.


2020 ◽  
Vol 77 (3) ◽  
Author(s):  
Daiana Alves da Silva ◽  
Cecília Alzira Ferreira Pinto-Maglio ◽  
Érica Cristina de Oliveira ◽  
Raquel Luiza de Moura dos Reis ◽  
Sérgio Augusto Morais Carbonell ◽  
...  

2019 ◽  
Vol 34 (1) ◽  
pp. 89-95
Author(s):  
Scott R. Bales ◽  
Christy L. Sprague

AbstractThe occurrence of herbicide tank contamination with dicamba or 2,4-D will likely increase with the recent commercialization of dicamba- and 2,4-D-resistant soybean. High-value sensitive crops, including dry bean, will be at higher risks for exposure. In 2017 and 2018, two separate field experiments were conducted in Michigan to understand how multiple factors may influence dry bean response to dicamba and 2,4-D herbicides, including 1) the interaction between herbicides applied POST to dry bean and dicamba or 2,4-D, and 2) the impact of low rates of glyphosate with dicamba or 2,4-D. Dry bean injury was 20% and 2% from POST applications of dicamba (5.6 h ae ha−1) and 2,4-D (11.2 g ae ha−1), respectively, 14 days after treatment (DAT). The addition of glyphosate (8.4 g ae ha−1) did not increase dry bean injury from dicamba or 2,4-D. Over 2 site-years the addition of dry bean herbicides to dicamba or dicamba + glyphosate (8.4 g ae ha−1) increased dry bean injury and reduced yield by 6% to 10% more than when dicamba or dicamba + glyphosate was applied alone. The interaction between 2,4-D (11.2 g ae ha−1) and dry bean herbicides was determined to be synergistic. However, 2,4-D (11.2 g ae ha−1) had little effect on dry bean with or without the addition of a dry bean herbicide program. These studies document that synergy also occurs between dicamba and dicamba + glyphosate and both common dry bean herbicide programs tested: 1) imazamox (35 g ha−1) + bentazon (560 g ha−1), and 2) fomesafen (280 g ha−1). The synergy between dry bean herbicide and dicamba and dicamba + glyphosate can increase plant injury, delay maturity, and reduce yield to a greater extent than dicamba or dicamba + glyphosate alone. This work emphasizes the need to properly clean out sprayers after applications of dicamba to reduce the risk of exposure to other crops.


2019 ◽  
Vol 34 (1) ◽  
pp. 117-124
Author(s):  
Scott R. Bales ◽  
Christy L. Sprague

AbstractDicamba and 2,4-D exposure to sensitive crops, such as dry bean, is of great concern with the recent registrations of dicamba- and 2,4-D–resistant soybean. In 2017 and 2018, field experiments were conducted at two Michigan locations to understand how multiple factors, including dry bean market class, herbicide rate, and application timing, influence dry bean response to dicamba and 2,4-D. Dicamba and 2,4-D at rates of 0.1%, 1%, and 10% of the field use rate for dicamba and 2,4-D choline were applied to V2 and V8 black and navy bean. Field-use rates for dicamba and 2,4-D choline were 560 and 1,120 g ae ha−1, respectively. There were few differences between market classes or application timings when dry bean was exposed to dicamba or 2,4-D. Estimated rates to cause 20% dry bean injury 14 d after treatment were 4.5 and 107.5 g ae ha−1 for dicamba and 2,4-D, respectively. When dicamba was applied at 56 g ae ha−1, light interception was reduced up to 51% and maturity was delayed up to 16 d. Although both herbicides caused high levels of injury to dry bean, yield reductions were not consistently observed. At four site-years, 2,4-D did not reduce dry bean yield or seed weight with any rate tested. However, when averaged over site-years, dicamba rates of 3.7, 9.8 and 17.9 g ae ha−1 were estimated to cause 5%, 10%, and 15% yield loss, respectively. Dicamba also reduced seed weight by 10% when 56 g ae ha−1 was applied. However, the germination of harvested seed was not affected by dicamba or 2,4-D. Long delays in dry bean maturity from dicamba injury can also indirectly increase losses in yield and quality due to harvestability issues. This work further stresses the need for caution when using dicamba or 2,4-D herbicides near sensitive crops.


2017 ◽  
Vol 27 (4) ◽  
pp. 502-509 ◽  
Author(s):  
Harlene Hatterman-Valenti ◽  
Greg Endres ◽  
Brian Jenks ◽  
Michael Ostlie ◽  
Theresa Reinhardt ◽  
...  

Field trials using sublethal doses of glyphosate, dicamba, or mixtures of both herbicides on dry edible pea (Pisum sativum), dry edible bean (Phaseolus vulgaris), and potato (Solanum tuberosum) were conducted at six locations to determine the injury potential if spray drift were to occur. All studies used three increasing sublethal doses of glyphosate and dicamba, which were labeled as low, medium, and high. The doses for each herbicide varied for the three crops because of expected sensitivity differences. Herbicide doses were targeted for the reproductive stage 1 with dry edible pea and dry edible bean, and at tuber initiation for potato. Visible injury 20 days after the treatment ranged from 0% to 13% for dry edible pea, 0% to 53% for dry edible bean, and 0% to 50% for potato. Compared with the nontreated, yield was least when doses included dicamba, regardless of the crop. Dry edible bean was the most sensitive crop to sublethal doses of dicamba, followed by dry edible pea and potato. Results from these six studies suggested that drift injury potential to dry edible pea, dry edible bean, and potato will be greater if a dicamba-resistant soybean (Glycine max) crop is adjacent and upwind compared with a glyphosate-resistant crop. Results also reinforce the need for diligence in the application of these herbicides in proximity to susceptible crops and the need to thoroughly clean sprayers before spraying a sensitive crop.


2016 ◽  
Vol 30 (4) ◽  
pp. 937-942 ◽  
Author(s):  
Gustavo M. Sbatella ◽  
Andrew R. Kniss ◽  
Emmanuel C. Omondi ◽  
Robert G. Wilson

Volunteer corn can affect dry bean by reducing yields; expanding the life cycle of insects, mites, and pathogens; interfering with harvest; and contaminating bean seed. Field studies were conducted at Lingle, WY, and Scottsbluff, NE, to determine the relationship between volunteer corn density and dry bean yield, establish the proper time of volunteer corn removal, and determine whether dry bean yield was affected by the method used to remove volunteer corn. Volunteer corn reduced dry bean yields, as recorded in other crops. Growing conditions for each location were different, as indicated by the accumulated growing degree days (GDD): Lingle 2008 (990), Lingle 2009 (780), and Scottsbluff 2009 (957). No difference in dry bean yields was observed between hand removal of volunteer corn and herbicide application. Dry bean yield loss increased with longer periods of volunteer corn competition and ranged from 1.2 to 1.8% yield loss for every 100 GDD that control was delayed. Control measures should be implemented 15 to 20 d after planting when volunteer corn densities are close to 1 plant m−2. Dry bean yield losses also increased as volunteer corn densities increased, with losses from 6.5 to 19.3% for 1 volunteer corn plant m−2. Based on 2015 prices, the cost of controlling volunteer corn would be the equivalent of 102 kg ha−1of dry bean, and potential losses above 4% would justify control and should not be delayed beyond 15 to 20 d after planting.


2016 ◽  
Vol 38 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Jessica M. Halvorson ◽  
Robin S. Lamppa ◽  
Samuel G. Markell ◽  
Julie S. Pasche
Keyword(s):  

2015 ◽  
Vol 95 (6) ◽  
pp. 1235-1242 ◽  
Author(s):  
Kristen E. McNaughton ◽  
Robert E. Blackshaw ◽  
Kristine A. Waddell ◽  
Robert H. Gulden ◽  
Peter H. Sikkema ◽  
...  

McNaughton, K. E., Blackshaw, R. E., Waddell, K. A., Gulden, R. H., Sikkema, P. H. and Gillard, C. L. 2015. Effect of five desiccants applied alone and in combination with glyphosate in dry edible bean (Phaseolus vulgaris L.). Can. J. Plant Sci. 95: 1235–1242. Application of dry bean desiccants just prior to crop maturity is common practice by Canadian producers. As dry beans are grown for human consumption it is critical that producers pick desiccants that do not affect crop yield, seed quality, or result in desiccant seed residue levels above accepted levels. In this study the efficacy of glyphosate, diquat, glufosinate, carfentrazone, flumioxazin, and saflufenacil as desiccants was examined for navy, cranberry, pinto, and great northern dry bean. Seed herbicide residues were also tested for each of the dry bean classes tested. Navy, cranberry, pinto, and great northern dry bean yields were not impacted by use of the desiccants diquat, carfentrazone, flumioxazin, or saflufenacil when applied at labelled rates and application timings. Additionally, herbicide residues in seed following application remained lower than maximum residue limits (MRL) established by primary Canadian dry bean export partners. Generally, dry bean colour, irrespective of class, was not altered by desiccant use; diquat and flumioxazin caused minor increases in the degree of red and yellow seed pigmentation for cranberry bean only. Although colour differences were noted using a Chroma meter the differences were slight and would not likely be of economic importance. Application of glyphosate did not affect crop yield, and seed residue levels were below MRLs for navy, pinto, and great northern bean. However, seed glyphosate residue levels were above the MRL for cranberry bean when glyphosate was applied alone or tankmixed with carfentrazone, flumioxazin, or saflufenacil. Seed residue levels were also above listed MRLs for some export countries when glufosinate was applied to navy, cranberry, and pinto bean, although crop yield and seed quality remained unaffected. These findings suggest that growers and contractors should avoid using glufosinate as a dry bean desiccant at least for some markets and that care should be taken when selecting glyphosate as a desiccant, especially for cranberry bean. Across all market classes desiccation progress of bean leaf, stem, and pod tissue was slowest when glyphosate and carfentrazone were used.


2015 ◽  
Vol 95 (2) ◽  
pp. 369-375 ◽  
Author(s):  
Kristen E. McNaughton ◽  
Robert E. Blackshaw ◽  
Kristine A. Waddell ◽  
Robert H. Gulden ◽  
Peter H. Sikkema ◽  
...  

McNaughton, K. E., Blackshaw, R. E., Waddell, K. A., Gulden, R. H., Sikkema, P. H. and Gillard, C. L. 2015. Effect of application timing of glyphosate and saflufenacil as desiccants in dry edible bean (Phaseolus vulgaris L.). Can. J. Plant Sci. 95: 369–375. Early application of desiccants in dry edible bean may cause yield reductions and unacceptable herbicide residue levels, resulting in rejection of exported shipments. The effect of application timing of two registered desiccants, glyphosate and saflufenacil, was examined in 12 field trials conducted over a 4-yr period (2009–2012) at Exeter, Ontario, Carman, Manitoba, and Lethbridge, Alberta. Desiccants were applied alone and in combination at five crop maturation stages. When glyphosate or saflufenacil alone, or in combination, was applied at 100% crop maturity, herbicide residue levels were acceptable (less than 2.0 and 0.01 ppm for glyphosate and saflufenacil, respectively) and there was no reduction in yield or hundred seed weight. Glyphosate residues remained below 2.0 ppm when the desiccant was applied alone or with saflufenacil at 75% crop maturity, but crop yield decreased by 16% compared with the untreated control when glyphosate and saflufenacil were combined. Residue levels were unacceptable when glyphosate was applied at 0, 25, and 50% maturity; generally the earlier glyphosate was applied, the greater the residue concentration in the seeds at harvest. Although no application timing resulted in saflufenacil residues above 0.01 ppm, crop yield was reduced when the desiccant was applied at 0, 25, 50, and 75% crop maturity. This information will provide dry bean processors with the necessary information to design guidelines concerning the application timing of glyphosate and saflufenacil so that bean yield and quality remain unaffected and seed residues remain below accepted levels.


2015 ◽  
Vol 16 (2) ◽  
pp. 71-72 ◽  
Author(s):  
Febina M. Mathew ◽  
Lisa A. Castlebury ◽  
Kholoud Alananbeh ◽  
James G. Jordahl ◽  
Chris A. Taylor ◽  
...  

North Dakota soybean production has expanded geographically, and possible short rotations with dry edible bean and pea raise concerns of pathogens (such as Diaporthe longicolla, cause of Phomopsis seed decay and stem disease of soybean) developing overlapping host ranges. To the best of our knowledge, this is the first report of D. longicolla causing stem disease on dry edible beans and dry edible peas, and stem disease on soybean in North Dakota. Its impact on dry edible beans and dry edible peas is uncertain. Accepted for publication 16 February 2015. Published 15 April 2015.


Sign in / Sign up

Export Citation Format

Share Document