scholarly journals Numerical simulation of chloride diffusion in cementitious materials by lattice type model

2019 ◽  
Vol 275 ◽  
pp. 02008
Author(s):  
Tianhua Li ◽  
Zichao Pan ◽  
Wenying Bai ◽  
Kejia Zhang

The chloride ingress is one of the most significant problems to reinforced concrete structures in coastal areas and cold regions where the de-icing salt is commonly used. In this paper, the lattice type model which has been widely used in fracture analysis of brittle materials is applied to simulate the chloride diffusion process in cementitious materials. The theoretical background of the lattice type model in solving the mass transport problem is briefly presented. The analytical solution of the Fick’s law is adopted to theoretically validate the developed lattice type model. After that, two typical case studies are included to demonstrate the application of the lattice type model in the chloride ingress issue. In the first case, the tortuosity effect of the aggregates on the chloride diffusion front at meso-scale is studied by the lattice model. In the second case, the lattice model is applied in the simulation of the chloride diffusion in cracked concrete. The results show that the lattice type model can be a useful tool to simulate the chloride ingress in the cementitious materials.

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1166 ◽  
Author(s):  
Ahmed Abd El Fattah ◽  
Ibrahim Al-Duais ◽  
Kyle Riding ◽  
Michael Thomas ◽  
Salah Al-Dulaijan ◽  
...  

Reinforcing steel corrosion, caused by chloride ingress into concrete, is the leading cause of reinforced concrete deterioration. One of the main findings in the literature for reducing chloride ingress is the improvement of the durability characteristics of concrete by the addition of supplementary cementitious materials (SCMs) and/or chemical agents to concrete mixtures. In this study, standard ASTM tests—such as rapid chloride permeability (RCPT), bulk diffusion and sorptivity tests—were used to measure concrete properties such as porosity, sorptivity, salt diffusion, and permeability. Eight different mixtures, prepared with different SCMs and corrosion inhibitors, were tested. Apparent and effective chloride diffusion coefficients were calculated using bound chloride isotherms and time-dependent decrease in diffusion. Diffusion coefficients decreased with time, especially with the addition of SCMs and corrosion inhibitors. The apparent diffusion coefficient calculated using the error function was slightly lower than the effective diffusion coefficient; however, there was a linear trend between the two. The formation factor was found to correlate with the effective diffusion coefficient. The results of the laboratory tests were compared and benchmarked to their counterparts in the marine exposure site in the Arabian Gulf in order to identify laboratory key tests to predict concrete durability. The overall performance of concrete containing SCMs, especially fly ash, were the best among the other mixtures in the laboratory and the field.


2016 ◽  
Vol 711 ◽  
pp. 241-248 ◽  
Author(s):  
Mickael Saillio ◽  
Véronique Baroghel-Bouny ◽  
Sylvain Pradelle

The main cause of premature deterioration of reinforced concrete structures is the corrosion of steel bars, induced by chloride ions (for example in marine environment) and/or by carbonation (atmospheric CO2). At the same time, environmental-induced degradations of concrete can also affect the structure, such as sulphate attack. This can lead to the formation of ettringite, inducing expansion inside the materials and finally degradation. Carbonation, chloride and sulphate ingress are usually studied separately in the literature. This is not representative of in-situ conditions since they can occur at the same time and can have an influence on each other. In this paper, chloride ingress are studied for concretes and cement pastes partially carbonated or/and in presence of sulphate in chloride contact solution. The mixtures contain OPC alone or with supplementary cementitious materials (SCM). SCMs are here pozzolanic materials (Fly Ash or Metakaolin) or alkali-activated materials such as ground granulated blast furnace slag (GGBS). The materials, partially carbonated (2 months in chamber at 1.5 % of CO2) or not, are put in contact with chloride solutions in presence of sulphate. This study focuses on the apparent chloride diffusion coefficients, as well as chloride binding isotherms which are obtained by the profile method. In addition, some aspects of the microstructure and of the pore structure are investigated, by using Mercury Intrusion Porosimetry and 27Al NMR, in order to better understand the results obtained relatively to the apparent chloride diffusion coefficients and to the chloride binding. Chloride ingress increases when sulphates are present in the contact solution for all cement materials tested (partially carbonated or not). In addition, chloride ingress is faster when the material is partially carbonated before contact with chloride solution. It appears that both carbonation or presence of sulphate decrease chloride binding, thus explaining the results. The results show an evolution of the properties as a function of the cement replacement ratio by SCMs.


Author(s):  
Haris Sohawon ◽  
Hans Beushausen

<p>Premature concrete degradation due to rebar corrosion has many financial and social implications on a large scale. Direct costs relate to the repair and rehabilitation of existing structures to maintain serviceability while indirect costs include loss in productivity and reduced economic growth. Hydrophobic (silane) impregnation represents a cost-effective way to increase the durability of concrete structures in cases where insufficient design cover quality and depth have been achieved. The water repellent product lines the internal capillary pore structure and provides a water-repellent concrete surface. Thus, the risk of reinforcement corrosion initiation and subsequent deterioration can be reduced as the ingress of water-dissolved aggressive species (chlorides) is minimised or prevented. The purpose of this study was to investigate and quantify the influence of silane impregnation as a remedial measure for poor quality or insufficient cover depth in newly constructed structures and ultimately predict the service life extension possible for specific cover depths. The effectiveness of silane impregnation in cracked concrete was also studied. The results indicate that silane impregnation reduces capillary absorption and conductivity of chloride ions for all the mixes. Chloride ingress in the treated concrete mixes was suppressed and lower chloride surface concentration (C<sub>s</sub> and apparent chloride diffusion coefficient (D<sub>a</sub>) were recorded. A slight decrease in carbonation depth was observed in the w/b 0.60 concrete mixes. The results also suggest that silane impregnation reduces chloride ingress in cracked concrete (up to a crack width of 0.6 mm). A lower rate of chloride ingress was predicted in the silane treated concrete and consequently to achieve the same service life, smaller cover depths are required. The overall results indicate that the service life of concrete with inadequate cover depth and quality, regardless of the binder type, can be effectively extended using hydrophobic (silane) impregnation, assuming proper surface preparation and application methods.</p>


1991 ◽  
Vol 24 (11) ◽  
pp. 51-62 ◽  
Author(s):  
N. Guiguer ◽  
T. Franz

In the last few years, groundwater management has concentrated on the protection of groundwater quality. An increasing number of countries has adopted policies to protect vital groundwater resources from deterioration by regulating human interaction with the subsurface, the use of potential contaminants, land use restrictions, and waste transport and storage. One of the more common regulatory approaches to the protection of groundwater focuses on public water supplies to reduce the potential of human exposure to hazardous contaminants. Under the framework of the Safe Drinking Water Act amended by U.S. Congress in 1986, The U.S.EPA (1987) issued guidelines for the delineation of wellhead protection areas, recommending the use of analytical and numerical models for the identification of such areas. In this study, the theoretical background for the development of one such numerical model is presented. Two real-world applications are discussed: in the first case history, the model is applied to a Superfund Site in Puerto Rico as a tool for assessment of the effectiveness of a proposed pump-and-treat scheme for aquifer remediation. Based on simulation results for the evolution of the existing contaminant plume it was verified that such a scheme would not work with the proposed purging wells. The second case history is the delineation of a wellhead protection area in the Town of Littleton, Massachusetts, and subsequent design of a monitoring well network.


2021 ◽  
Vol 13 (7) ◽  
pp. 3979
Author(s):  
Rosa María Tremiño ◽  
Teresa Real-Herraiz ◽  
Viviana Letelier ◽  
Fernando G. Branco ◽  
José Marcos Ortega

One of the ways of lessening the CO2 emissions of cement industry consists of replacing clinkers with supplementary cementitious materials. The required service life of real construction elements is long, so it is useful to characterize the performance of these materials in the very long term. Here, the influence of incorporating waste glass powder as a supplementary cementitious material, regarding the microstructure and durability of mortars after 1500 hardening days (approximately 4 years), compared with reference mortars without additions, was studied. The percentages of clinker replacement by glass powder were 10% and 20%. The microstructure was studied using impedance spectroscopy and mercury intrusion porosimetry. Differential thermal and X-ray diffraction analyses were performed for assessing the pozzolanic activity of glass powder at the end of the time period studied. Water absorption after immersion, the steady-state diffusion coefficient, and length change were also determined. In view of the results obtained, the microstructure of mortars that incorporated waste glass powder was more refined compared with the reference specimens. The global solid fraction and pores volume were very similar for all of the studied series. The addition of waste glass powder reduced the chloride diffusion coefficient of the mortars, without worsening their behaviour regarding water absorption after immersion.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yongchun Cheng ◽  
Yuwei Zhang ◽  
Chunli Wu ◽  
Yubo Jiao

A chloride ion is a key factor affecting durability of reinforced concrete (RC) structures. In order to investigate chloride migration in cracked concrete, considering the mesoscopic heterogeneity of concrete, concrete modeled here is treated as a four-phase composite consisting aggregate, mortar, crack, and interfacial transition zone (ITZ). In this paper, two-dimensional finite element models of cracked concrete with different crack widths and crack quantity are established and the control parameters are determined based on the nonsteady-state chloride migration (NSSCM) test. In addition, based on the concrete finite element models, influences of crack width, crack quantity, and erosion time on chloride migration behaviors and characteristics are studied. Furthermore, a prediction model of chloride concentration on the simulated surface of a rebar in concrete influenced by different crack states is established. This model is used to derive the corrosion current density and corrosion depth prediction models of a rebar in this paper, which can be used by engineers to estimate the migration behaviors of chloride and rebar corrosion degree in RC structures in a short time and evaluate the duration of RC structures after knowing the status of cracks and chloride diffusion sources.


2021 ◽  
Vol 888 ◽  
pp. 67-75
Author(s):  
Ariel Verzosa Melendres ◽  
Napoleon Solo Dela Cruz ◽  
Araceli Magsino Monsada ◽  
Rolan Pepito Vera Cruz

Chloride ingress into concrete from the surrounding environment can result in the corrosion of the embedded steel reinforcement and cause damage to the concrete. Superabsorbent polymer (SAP) with fine particle size was incorporated into the structure of concrete for controlling the chloride ingress and improving its compressive strength via promotion of internal curing. The SAP used in this study was evaluated for its absorbency property when exposed to cementitious environment such as aqueous solution of Ca (OH)2 and cement slurry. The results were compared to that in sodium chloride solution, the environment where absorbency of most of the SAP found in the market are well studied. Results showed that although SAP absorbency decreased with increasing concentration of Ca (OH)2 and cement, the results suggest that water containing cementitious materials are able to be absorbed by SAP. Chloride ingress into 28-day cured concrete specimens were determined using Rapid Chloride Penetration Test (RCPT) method employing 60V DC driving force. Concrete samples with size of 50 mm height x 100 mm diameter were prepared using a M25 mix design with 0.4 and 0.45 water to cement ratios and different percentages of SAP such as 0.05%, 0.1% and 0.15% with respect to cement mass. Results showed that concrete with 0.15% SAP gave the best result with 14% less chloride permeability than concrete with no SAP for a 0.4 water to cement ratio. Concrete samples for compressive strength tests with size of 200 mm height x 100 mm diameter were prepared using the same mix design and percentages of SAP and cured for 28 days. Results showed that the best results for compressive strength was found at 0.1% SAP at a 0.4 water to cement ratio which can be attributed to internal curing provided by SAP.


Sign in / Sign up

Export Citation Format

Share Document