scholarly journals Transcriptomic and Metabolic Analyses Reveal the Mechanism of Ethylene Production in Stony Hard Peach Fruit during Cold Storage

2021 ◽  
Vol 22 (21) ◽  
pp. 11308
Author(s):  
Yan Wang ◽  
Li Deng ◽  
Junren Meng ◽  
Liang Niu ◽  
Lei Pan ◽  
...  

Stony hard (SH) peach (Prunus persica L. Batsch) fruit does not release ethylene and has very firm and crisp flesh at ripening, both on- and off-tree. Long-term cold storage can induce ethylene production and a serious risk of chilling injury in SH peach fruit; however, the regulatory mechanism underlying ethylene production in stony hard peach is relatively unclear. In this study, we analyzed the phytohormone levels, fruit firmness, transcriptome, and lipidome changes in SH peach ‘Zhongtao 9’ (CP9) during cold storage (4 °C). The expression level of the ethylene biosynthesis gene PpACS1 and the content of ethylene in SH peach fruit were found to be upregulated during cold storage. A peak in ABA release was observed before the release of ethylene and the genes involved in ABA biosynthesis and degradation, such as zeaxanthin epoxidase (ZEP) and 8’-hydroxylase (CYP707A) genes, were specifically induced in response to low temperatures. Fruit firmness decreased fairly slowly during the first 20 d of refrigeration, followed by a sharp decline. Furthermore, the expression level of genes encoding cell wall metabolic enzymes, such as polygalacturonase, pectin methylesterase, expansin, galactosidase, and β-galactosidase, were upregulated only upon refrigeration, as correlated with the decrease in fruit firmness. Lipids belonging to 23 sub-classes underwent differential rearrangement during cold storage, especially ceramide (Cer), monoglycosylceramide (CerG1), phosphatidic acid (PA), and diacyglyceride (DG), which may eventually lead to ethylene production. Exogenous PC treatment provoked a higher rate of ethylene production. We suspected that the abnormal metabolism of ABA and cell membrane lipids promotes the production of ethylene under low temperature conditions, causing the fruit to soften. In addition, ERF transcription factors also play an important role in regulating lipid, hormone, and cell wall metabolism during long-term cold storage. Overall, the results of this study give us a deeper understanding of the molecular mechanism of ethylene biosynthesis during the postharvest storage of SH peach fruit under low-temperature conditions.

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 373
Author(s):  
H. M. Prathibhani C. Kumarihami ◽  
Jin Gook Kim ◽  
Yun-Hee Kim ◽  
Mockhee Lee ◽  
Young-Suk Lee ◽  
...  

The influence of the preharvest application of chitosan on physicochemical properties and changes in gene expression of ‘Garmrok’ kiwifruit during postharvest cold storage (0 °C; RH 90–95%; 90 days) was investigated. Preharvest treatment of chitosan increased the fruit weight but had no significant effect on fruit size. The chitosan treatment suppressed the ethylene production and respiration rate of kiwifruit during the cold storage. The reduction of ethylene production of chitosan-treated kiwifruit was accompanied with the suppressed expression of ethylene biosynthesis genes. Moreover, preharvest application of chitosan diminished weight loss and delayed the changes in physicochemical properties that include firmness, soluble solids content, titratable acidity, total sugars, total acids, total phenols, and total lignin. As a result, the preharvest application of chitosan delayed the maturation and ripening of fruit. Expression of genes related to cell wall modification was down-regulated during the early maturation (ripening) period, while those related to gene expression for lignin metabolism were up-regulated at the later stages of ripening. These results demonstrate that the preharvest application of chitosan maintained the fruit quality and extends the postharvest life of ‘Garmrok’ kiwifruit, possibly through the modulation of genes related to ethylene biosynthesis, cell wall modification, and lignin metabolism.


2008 ◽  
Vol 133 (6) ◽  
pp. 727-734 ◽  
Author(s):  
Hong Zhu ◽  
Eric P. Beers ◽  
Rongcai Yuan

Effects of naphthaleneacetic acid (NAA) and aminoethoxyvinylglycine (AVG) on young fruit abscission, leaf and fruit ethylene production, and expression of genes related to ethylene biosynthesis and cell wall degradation were examined in ‘Delicious’ apples (Malus ×domestica Borkh.). NAA at 15 mg·L−1 increased fruit abscission and ethylene production of leaves and fruit when applied at the 11-mm stage of fruit development, whereas AVG, an inhibitor of ethylene biosynthesis, at 250 mg·L−1 reduced NAA-induced fruit abscission and ethylene production of leaves and fruit. NAA also increased expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase genes (MdACS5A and MdACS5B), ACC oxidase gene (MdACO1), and ethylene receptor genes (MdETR1a, MdETR1b, MdETR2, MdERS1, and MdERS2) in fruit cortex and fruit abscission zones. However, AVG reduced NAA-induced expression of these genes except for MdERS2 in fruit abscission zones. NAA increased expression of the polygalacturonase gene MdPG2 in fruit abscission zones but not in fruit cortex, whereas AVG reduced NAA-enhanced expression of MdPG2 in fruit abscission zones. The expression of β-1,4-glucanase gene MdCel1 in fruit abscission zones was decreased by NAA but was unaffected by AVG. Our results suggest that ethylene biosynthesis, ethylene perception, and the MdPG2 gene are involved in young fruit abscission caused by NAA.


HortScience ◽  
1999 ◽  
Vol 34 (4) ◽  
pp. 705-707 ◽  
Author(s):  
Douglas D. Archbold ◽  
Thomas R. Hamilton-Kemp ◽  
Ann M. Clements ◽  
Randy W. Collins

Seedless table grapes (Vitis vinifera L.) cv. Crimson Seedless were exposed to (E)-2-hexenal vapor during cold storage to determine its potential as a fumigant for long-term control of postharvest mold. Fruit were fumigated with 0.86 or 1.71 mmol (100 or 200 μL neat compound, respectively) (E)-2-hexenal per 1.1-L container for 2 weeks during 2 °C storage. Containers were moved to 20 °C storage after 4, 8, and 12 weeks for determination of mold incidence and berry quality over 12 days. The headspace concentration of (E)-2-hexenal, measured by gas chromatography, reached a maximum of 2.5 and 4.2 μmol·L–1 for 0.86 and 1.71 mmol per container, respectively, after 1 day and declined to <1 μmol·L–1 for both treatments by 14 days. Upon removal from cold storage at 4, 8, and 12 weeks, the incidence of mold was significantly lower for (E)-2-hexenal–treated fruit. Control of mold by (E)-2-hexenal fumigation persisted through 12 days of 20 °C storage, even though mold generally increased in all treatments. The two levels of (E)-2-hexenal were similar in their suppression of mold. Fumigation did not affect O2 or CO2 concentrations within the containers, nor were fruit firmness or soluble solids content affected. Postharvest fumigation of seedless table grapes with the natural volatile compound (E)-2-hexenal shows promise for control of mold.


2008 ◽  
Vol 14 (4) ◽  
pp. 385-391 ◽  
Author(s):  
G.A. Manganaris ◽  
M. Vasilakakis ◽  
I. Mignani ◽  
A. Manganaris

A comparative study between melting flesh peach fruit (Prunus persica L. Batsch cvs. Royal Glory and Morettini No 2) with contrasting tissue firmness during their on-tree ripening was conducted. Such fruit were cold stored (0 °C) for 4 and 6 weeks, and subsequently transferred at 25 °C (shelf life) for up to 5 days and evaluated for quality attributes and cell wall physicochemical properties. Data were partly unexpected, since fruit of the soft cultivar (Morettini No 2) were characterized by lower exo- and endo-PG activity, lower amounts of ethylene evolution, as well as higher amounts of endogenous calcium bound in the cell wall compared to fruit of the firmer cultivar (Royal Glory). These differences may be attributed to the incidence of chilling injury symptoms, evident as loss of juiciness in Morettini No 2 fruit, while Royal Glory fruit were characterized by acceptable appearance and eating quality even after 6 weeks cold storage plus 5 days shelf life, as the fruit softened gradually without cell rupture. Overall results showed that no direct relationship between cell wall physicochemical properties and sensory attributes can be established, indicating the complexity of peach fruit ripening. Since fruit of both cultivars presented similar tissue firmness after 5 days shelf life an attempt to distinguish normal peach fruit softening from cell rupture-chilling injury also has been made in the current study.


2010 ◽  
Vol 16 (2) ◽  
pp. 159-167 ◽  
Author(s):  
B. Orihuel-Iranzo ◽  
M. Miranda ◽  
L. Zacarías ◽  
M.T. Lafuente

The effects of storage temperature, inhibition of ethylene action by treatment with 1-methylcyclopropene (1-MCP) and ultra low oxygen (ULO) atmosphere on chilling injury (CI), fruit firmness and ethylene production in the astringent ‘Rojo Brillante’ persimmon fruit were investigated. CI symptoms were manifested as a very dramatic loss of firmness after fruit transfer from cold storage to shelf-life conditions (18 °C). During cold storage, fruit softening appeared more rapidly in fruit stored at the intermediate temperature of 10 °C than at 1°C or 14.5 °C. Ethylene production increased with storage time at the chilling temperature (1 °C) but a sharp increase took place upon fruit transfer from 1 °C to ambient temperature. This ethylene increase was accompanied by a loss of fruit firmness associated with chilling damage development. A pre-treatment with the competitive inhibitor of ethylene action 1-MCP, at 1 μL/L, reduced firmness loss and mitigated CI damage but considerably increased ethylene production in fruit transferred to shelf-life conditions after a prolonged cold storage period. Collectively, these results suggest a role of ethylene in the reduction of flesh firmness and consequently in the induction of CI in persimmon fruit. Moreover, ethylene exerts a negative feedback regulation of cold-induced ethylene biosynthesis. Storage of ‘Rojo Brillante’ persimmon fruit under ULO (1.3—1.8% O2, v/v) atmosphere did not affect the incidence of CI but reduced fruit astringency, suggesting that ULO may be an alternative postharvest storage system for ‘Rojo Brillante’ persimmon fruit.


2018 ◽  
Vol 9 ◽  
Author(s):  
Stefano Brizzolara ◽  
Maarten Hertog ◽  
Roberta Tosetti ◽  
Bart Nicolai ◽  
Pietro Tonutti

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 553
Author(s):  
Patricio Olmedo ◽  
Baltasar Zepeda ◽  
Bárbara Rojas ◽  
Christian Silva-Sanzana ◽  
Joaquín Delgado-Rioseco ◽  
...  

The firmness of blueberry is one of its most significant quality attributes. Modifications in the composition of the cell wall have been associated with changes in the fruit firmness. In this work, cell wall components and calcium concentration in two blueberry cultivars with contrasting firmness phenotypes were evaluated at harvest and 30 days cold storage (0 °C). High performance anion-exchange chromatography with pulse amperometric detector (HPAEC-PAD) analysis was performed using the “Emerald” (firmer) and “Jewel” (softer) blueberry cultivars, showing increased glucose in the firmer cultivar after cold storage. Moreover, the LM15 antibody, which recognizes xyloglucan domains, displayed an increased signal in the Emerald cultivar after 30 d cold storage. Additionally, the antibody 2F4, recognizing a homogalacturonan calcium-binding domain, showed a greater signal in the firmer Emerald blueberries, which correlates with a higher calcium concentration in the cell wall. These findings suggest that xyloglucan metabolism and a higher concentration of cell wall calcium influenced the firmness of the blueberry fruit. These results open new perspectives regarding the role of cell wall components as xyloglucans and calcium in blueberry firmness.


Author(s):  
S. Errico ◽  
S. Dimatteo ◽  
S. Moliterni ◽  
F. Baldacchino

Insects are an emergent source of proteins in the world nutrition, both for humans and farmed animals, moreover they represent a novel food in Europe. The interest in Tenebrio molitor (L.) has particularly grown because its larvae are very rich of high biological value proteins. Although rearing of T. molitor has lately increased, the long-time conservation of alive larvae, very useful for both production and research, needs more information. Research studies conducted so far have investigated the reactions to low temperature on mealworms pupae and adults, or on larvae at 10 °C and for no more than 48 h. The aim of this study is to test the long-term effects of different times of cold storage at 10 °C on the larval survival and on the ability to become healthy adults and to potentially reproduce normally. The insects, divided in experimental groups, were refrigerated on sterile bran (and 10% of yeast) at 10±1 °C and 63% RH for 4 different periods of storage, from 30 to 120 days. Larval survival (i.e. number of larvae alive and number of pupae, expressed as a percentage), weight gain and presence of pupae were detected at the end of each period. The ability to complete the cycle was assessed by detecting the number of hatched pupae, deformed and well-formed adults. Our research results point out the possibility to store T. molitor alive larvae for long time (at least 120 days) at low temperature without significant negative effects on their ability to survive, with a relatively small loss (15.81%) and a very small percentage of deformed adults (4.07%). Further researches will be carried out to test the fertility of the well-formed adults and their ability to reproduce.


Sign in / Sign up

Export Citation Format

Share Document