scholarly journals Analysis of Hull Shape Impact on Energy Consumption in an Electric Port Tugboat

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 339
Author(s):  
Wojciech Koznowski ◽  
Andrzej Łebkowski

The trend to replace internal combustion engines with electric zero-emission drives, visible in the automotive industry, also exists in the shipbuilding industry. In contrary to land vehicles, the requirements for the electric propulsion system of tugs are much greater, which combined with the limited space and energy on board, makes any amount of energy valuable. Strategic changes in the policy of many countries, such as the “Fit for 55” package, introduce plans to significantly reduce CO2 emissions, which favors the development of alternative drives and their introduction to new areas of operation. This article presents that it is possible to reduce the amount of energy an electric tug spends for movement by applying the Particle Swarm Optimization method to modify the shape of its hull. A statistical analysis of public data was performed to determine the speed profiles of actual port tugs. The Van Oortmerssen method was used to determine the hull resistances of the proposed tug and the impact of the hull shape modification sets on reducing these resistances. Based on the six obtained speed profiles, it was determined that one of the tested variants of modifications made it possible to reduce energy consumption on average by 2.12%, to even 3.87% for one of the profiles, and that some modifications increase energy consumption by even 6.59%.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7492
Author(s):  
Vincent Berthome ◽  
David Chalet ◽  
Jean-François Hetet

Particulate emission from internal combustion engines is a complex phenomenon that needs to be understood in order to identify its main factors. To this end, it appears necessary to study the impact of unburned gases, called blow-by gases, which are reinjected into the engine intake system. A series of transient tests demonstrate their significant contribution since the particle emissions of spark-ignition engines are 1.5 times higher than those of an engine without blow-by with a standard deviation 1.5 times greater. After analysis, it is found that the decanter is not effective enough to remove completely the oil from the gases. Tests without blow-by gases also have the advantage of having a lower disparity, and therefore of being more repeatable. It appears that the position of the “endgap” formed by the first two rings has a significant impact on the amount of oil transported towards the combustion chamber by the backflow, and consequently on the variation of particle emissions. For this engine and for this transient, 57% of the particulate emissions are related to the equivalence ratio, while 31% are directly related to the ability of the decanter to remove the oil of the blowby gases and 12% of the emissions come from the backflow. The novelty of this work is to relate the particles fluctuation to the position of the endgap ring.


2020 ◽  
Vol 10 (11) ◽  
pp. 3705
Author(s):  
Ahmad Alshwawra ◽  
Florian Pohlmann-Tasche ◽  
Frederik Stelljes ◽  
Friedrich Dinkelacker

Reducing friction is an important aspect to increase the efficiency of internal combustion engines (ICE). The majority of frictional losses in engines are related to both the piston skirt and piston ring–cylinder liner (PRCL) arrangement. We studied the enhancement of the conformation of the PRCL arrangement based on the assumption that a suitable conical liner in its cold state may deform into a liner with nearly straight parallel walls in the fired state due to the impact of mechanical and thermal stresses. Combining the initially conical shape with a noncircular cross section will bring the liner even closer to the perfect cylindrical shape in the fired state. Hence, a significant friction reduction can be expected. For the investigation, the numerical method was first developed to simulate the liner deformation with advanced finite element methods. This was validated with given experimental data of the deformation for a gasoline engine in its fired state. In the next step, initially conically and/or elliptically shaped liners were investigated for their deformation between the cold and fired state. It was found that, for liners being both conical and elliptical in their cold state, a significant increase of straightness, parallelism, and roundness was reached in the fired state. The combined elliptical-conical liner led to a reduced straightness error by more than 50% compared to the cylindrical liner. The parallelism error was reduced by 60% to 70% and the roundness error was reduced between 70% and 80% at different liner positions. These numerical results show interesting potential for the friction reduction in the piston-liner arrangement within internal combustion engines.


2019 ◽  
Vol 11 (23) ◽  
pp. 6585 ◽  
Author(s):  
Markiewicz ◽  
Muślewski

The application of fuels from renewable energy sources for combustion engine powering involves a great demand for this kind of energy while its production infrastructure remains underdeveloped. The use of this kind of fuel is supposed to reduce the emission of greenhouse gases and the depletion of natural resources and to increase the share of renewable energy sources in total energy consumption and thus support sustainable development in Europe. This study presents the results of research on selected performance parameters of transport by internal combustion engines including: power, torque, the emission of sound generated by the engine, the content of exhaust components (oxygen O2, carbon monoxide CO, carbon dioxide CO2, nitrogen dioxide NO2), and the content of particulate matter (PM) in exhaust emission. Three self-ignition engines were tested. The fuel injection controllers of the tested internal combustion engines were additionally adjusted by increasing the fuel dose and the load of air. The material used in the tests were mixtures of diesel oil and fatty acid methyl esters of different concentration. A statistical analysis was performed based of the results. The purpose of the work was to develop a resulting model for assessing the operation of engines fueled with biofuel and diesel mixtures while changing the vehicle's computer software. A computer simulation algorithm was also developed for the needs of the tests which was used to prognose the state of the test results for variable input parameters.


2020 ◽  
Vol 183 (4) ◽  
pp. 11-14
Author(s):  
Małgorzata Mrozik

The aim of the article is to present the environmental effects of changes in material composition in selected internal combustion engines used in passenger cars using LCA analysis. The levels of energy consumption and emissions of pollutants related to material inputs occurring at the stage of engine production have been determined. The simplified LCA model presented in the paper shows the energy consumption and total CO2 and SO2 emissions on the basis of the mass of materials from which the engine is made. The research results presented in the paper give a picture of a modern passenger car engine on the basis of wear and the degree of recovery of materials used for its construction.


2021 ◽  
Vol 15 (2) ◽  
pp. 8153-8168
Author(s):  
Saeed Chamehsara ◽  
Mohammadreza Karami

In order to repair internal combustion engines, sometimes it is necessary to replace the components of these engines with each other. Therefore changes in engine performance are inevitable in these conditions. In the present study, by changing the coneccting rod and the crank of the OM457 turbo diesel-fueled engine with the OM444, it was observed that the performance of the engine decreases. Numerical simulations have been carried out to study the Possible ways to mitigate this reduction. One way to achieve this goal is to change the fuel injector’s characteristics such as, fuel injector’s nozzle hole diameter, number of nozzle holes, and start time of fuel injection. In this study, the impact of these parameters on the performance and emissions of these engines were analyzed. Another scenario is an increase in inlet fuel and air by the same amount. The results indicate that By reducing the diameter of fuel injector holes and hole numbers, the performance of the engine was increased. on the other hand, the NOx emissions were increased while the amount of soot emission decreased. The same results were concluded by retarding the start time of injection. Subsequently, a case study of changing fuel injector parameters for mitigation of decreased performance was performed. These parameters were simultaneously applied, and results were compared. The performance of the engine with improved injector’s characteristics was close to the main OM457. Similar results were obtained by increasing the amount of inlet air and fuel.


Sign in / Sign up

Export Citation Format

Share Document