scholarly journals Mutational signatures among young-onset testicular cancers

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nicole E. Mealey ◽  
Dylan E. O’Sullivan ◽  
Cheryl E. Peters ◽  
Daniel Y. C. Heng ◽  
Darren R. Brenner

Abstract Background Incidence of testicular cancer is highest among young adults and has been increasing dramatically for men born since 1945. This study aimed to elucidate the factors driving this trend by investigating differences in mutational signatures by age of onset. Methods We retrieved somatic variant and clinical data pertaining to 135 testicular tumors from The Cancer Genome Atlas. We compared mutational load, prevalence of specific mutated genes, mutation types, and mutational signatures between age of onset groups (< 30 years, 30–39 years, ≥ 40 years) after adjusting for subtype. A recursively partitioned mixture model was utilized to characterize combinations of signatures among the young-onset cases. Results Mutational load was significantly higher among older-onset tumors (p < 0.05). There were no highly prevalent driver mutations among young-onset tumors. Mutated genes and types of nucleotide mutations were not significantly different by age group (p > 0.05). Signatures 1, 8 and 29 were more common among young-onset tumors, while signatures 11 and 16 had higher prevalence among older-onset tumors (p < 0.05). Among young-onset tumors, clustering of signatures resulted in four distinct tumor classes. Conclusions Signature contributions differ by age with signatures 1, 8 and 29 were more common among younger-onset tumors. While these signatures are connected with endogenous deamination of 5-methylcytosine, late replication errors and chewing tobacco, respectively, additional research is needed to further elucidate the etiology of young-onset testicular cancer. Large studies of mutational signatures among young-onset patients are required to understand epidemiologic trends as well as inform targeted prevention and treatment strategies.

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
John K. L. Wong ◽  
Christian Aichmüller ◽  
Markus Schulze ◽  
Mario Hlevnjak ◽  
Shaymaa Elgaafary ◽  
...  

AbstractCancer driving mutations are difficult to identify especially in the non-coding part of the genome. Here, we present sigDriver, an algorithm dedicated to call driver mutations. Using 3813 whole-genome sequenced tumors from International Cancer Genome Consortium, The Cancer Genome Atlas Program, and a childhood pan-cancer cohort, we employ mutational signatures based on single-base substitution in the context of tri- and penta-nucleotide motifs for hotspot discovery. Knowledge-based annotations on mutational hotspots reveal enrichment in coding regions and regulatory elements for 6 mutational signatures, including APOBEC and somatic hypermutation signatures. APOBEC activity is associated with 32 hotspots of which 11 are known and 11 are putative regulatory drivers. Somatic single nucleotide variants clusters detected at hypermutation-associated hotspots are distinct from translocation or gene amplifications. Patients carrying APOBEC induced PIK3CA driver mutations show lower occurrence of signature SBS39. In summary, sigDriver uncovers mutational processes associated with known and putative tumor drivers and hotspots particularly in the non-coding regions of the genome.


2021 ◽  
Author(s):  
Jaime Davila ◽  
Pritha Chanana ◽  
Vivekananda Sarangi ◽  
Zach Fogarty ◽  
John Weroha ◽  
...  

Abstract Background: DNA polymerase epsilon (POLE) is encoded by the POLE gene, and POLE-driven tumors are characterized by high mutational rates. POLE-driven tumors are relatively common in endometrial and colorectal cancer, and their presence is increasingly recognized in ovarian cancer (OC) of endometrioid type. POLE-driven cases possess an abundance of TCT>TAT and TCG>TTG somatic mutations characterized by mutational signature 10 from the Catalog of Somatic Mutations in Cancer (COSMIC). By quantifying the contribution of COSMIC mutational signature 10 in RNA sequencing (RNA-seq) we set out to identify POLE-driven tumors in a set of unselected Mayo Clinic OC. Methods: Mutational profiles were calculated using expressed single-nucleotide variants (eSNV) in the Mayo Clinic OC tumors (n=195), The Cancer Genome Atlas (TCGA) OC tumors (n=419), and the Genotype-Tissue Expression (GTEx) normal ovarian tissues (n=84). Non-negative Matrix Factorization (NMF) of the mutational profiles inferred the contribution per sample of four distinct mutational signatures, one of which corresponds to COSMIC mutational signature 10. Results: In the Mayo Clinic OC cohort we identified six tumors with a predicted contribution from COSMIC mutational signature 10 of over five mutations per megabase. These six cases harbored known POLE hotspot mutations (P286R, S297F, V411L, and A456P) and were of endometrioid histotype (P=5e-04). These six tumors were hypermutated with a higher tumor mutation load (mean, 54.02 mutations per megabase) compared to non-POLE endometrioid OC cases (mean, 7.69 mutations per megabase; P=5e-04), and had an early onset (average age of patients at onset, 48.33 years) when compared to non-POLE endometrioid OC cohort (average age at onset, 60.13 years; P=.008). Samples from TCGA and GTEx had a low COSMIC signature 10 contribution (median 0.16 mutations per megabase; maximum 1.78 mutations per megabase) and carried no POLE hotspot mutations.Conclusions: From the largest cohort of RNA-seq from endometrioid OC to date (n=53), we identified six hypermutated samples likely driven by POLE (frequency, 11%). Our result suggests the clinical need to screen for POLE driver mutations in endometrioid OC, which can guide enrollment in immunotherapy clinical trials.


2020 ◽  
Vol 132 (5) ◽  
pp. 1435-1446 ◽  
Author(s):  
Ege Ülgen ◽  
Özge Can ◽  
Kaya Bilguvar ◽  
Yavuz Oktay ◽  
Cemaliye B. Akyerli ◽  
...  

OBJECTIVEProcesses that cause or contribute to cancer, such as aging, exposure to carcinogens, or DNA damage repair deficiency (DDRd), create predictable and traceable nucleotide alterations in one’s genetic code (termed “mutational signatures”). Large studies have previously identified various such mutational signatures across cancers that can be attributed to the specific causative processes. To gain further insight into the processes in glioma development, the authors analyzed mutational signatures in adult diffuse gliomas (DGs).METHODSTwenty-five DGs and paired blood samples were whole exome sequenced. Somatic mutational signatures were identified using 2 different methods. Associations of the signatures with age at diagnosis, molecular subset, and mutational load were investigated. As DDRd-related signatures were frequently observed, germline and somatic DDR gene mutations as well as microsatellite instability (MSI) status were determined for all samples. For validation of signature prevalence, publicly available data from The Cancer Genome Atlas (TCGA) were used.RESULTSEach tumor had a unique combination of signatures. The most common signatures were signature 1 (88%, aging related), signature 3 (52%, homologous recombination related), and signature 15 (56%, mismatch repair related). Eighty-four percent of the tumors contained at least 1 DDRd signature. The findings were validated using public TCGA data. The weight of signature 1 positively correlated with age (r = 0.43) while cumulative weight of DDRd signatures negatively correlated with age (r = −0.16). Each subject had at least 1 germline/somatic alteration in a DDR gene, the most common being the risk single nucleotide polymorphism rs1800734 in MLH1. The rs1800734-AA genotype had a higher cumulative DDRd weight as well as higher mutational load; TP53 was the most common somatically altered DDR gene. MSI was observed in 24% of the tumors. No significant associations of MSI status with mutational load, rs1800734, or the cumulative weight of DDRd signatures were identified.CONCLUSIONSCurrent findings suggest that DDRd may act as a fundamental mechanism in gliomagenesis rather than being a random, secondary event.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jaime I. Davila ◽  
Pritha Chanana ◽  
Vivekananda Sarangi ◽  
Zachary C. Fogarty ◽  
S. John Weroha ◽  
...  

Abstract Background DNA polymerase epsilon (POLE) is encoded by the POLE gene, and POLE-driven tumors are characterized by high mutational rates. POLE-driven tumors are relatively common in endometrial and colorectal cancer, and their presence is increasingly recognized in ovarian cancer (OC) of endometrioid type. POLE-driven cases possess an abundance of TCT > TAT and TCG > TTG somatic mutations characterized by mutational signature 10 from the Catalog of Somatic Mutations in Cancer (COSMIC). By quantifying the contribution of COSMIC mutational signature 10 in RNA sequencing (RNA-seq) we set out to identify POLE-driven tumors in a set of unselected Mayo Clinic OC. Methods Mutational profiles were calculated using expressed single-nucleotide variants (eSNV) in the Mayo Clinic OC tumors (n = 195), The Cancer Genome Atlas (TCGA) OC tumors (n = 419), and the Genotype-Tissue Expression (GTEx) normal ovarian tissues (n = 84). Non-negative Matrix Factorization (NMF) of the mutational profiles inferred the contribution per sample of four distinct mutational signatures, one of which corresponds to COSMIC mutational signature 10. Results In the Mayo Clinic OC cohort we identified six tumors with a predicted contribution from COSMIC mutational signature 10 of over five mutations per megabase. These six cases harbored known POLE hotspot mutations (P286R, S297F, V411L, and A456P) and were of endometrioid histotype (P = 5e−04). These six tumors had an early onset (average age of patients at onset, 48.33 years) when compared to non-POLE endometrioid OC cohort (average age at onset, 60.13 years; P = .008). Samples from TCGA and GTEx had a low COSMIC signature 10 contribution (median 0.16 mutations per megabase; maximum 1.78 mutations per megabase) and carried no POLE hotspot mutations. Conclusions From the largest cohort of RNA-seq from endometrioid OC to date (n = 53), we identified six hypermutated samples likely driven by POLE (frequency, 11%). Our result suggests the clinical need to screen for POLE driver mutations in endometrioid OC, which can guide enrollment in immunotherapy clinical trials.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1757
Author(s):  
Ioanna Gazouli ◽  
Anastasios Kyriazoglou ◽  
Ioannis Kotsantis ◽  
Maria Anastasiou ◽  
Anastasios Pantazopoulos ◽  
...  

Osteosarcoma is the most frequent primary bone cancer, mainly affecting those of young ages. Although surgery combined with cytotoxic chemotherapy has significantly increased the chances of cure, recurrent and refractory disease still impose a tough therapeutic challenge. We performed a systematic literature review of the available clinical evidence, regarding treatment of recurrent and/or refractory osteosarcoma over the last two decades. Among the 72 eligible studies, there were 56 prospective clinical trials, primarily multicentric, single arm, phase I or II and non-randomized. Evaluated treatment strategies included cytotoxic chemotherapy, tyrosine kinase and mTOR inhibitors and other targeted agents, as well as immunotherapy and combinatorial approaches. Unfortunately, most treatments have failed to induce objective responses, albeit some of them may sustain disease control. No driver mutations have been recognized, to serve as effective treatment targets, and predictive biomarkers of potential treatment effectiveness are lacking. Hopefully, ongoing and future clinical and preclinical research will unlock the underlying biologic mechanisms of recurrent and refractory osteosarcoma, expanding the therapeutic choices available to pre-treated osteosarcoma patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Woon Yong Jung ◽  
Kyueng-Whan Min ◽  
Young Ha Oh

AbstractThe histological classification of lung adenocarcinoma includes 5 types: lepidic, acinar, papillary, micropapillary and solid. The complex gene interactions and anticancer immune response of these types are not well known. The aim of this study was to reveal the survival rates, genetic alterations and immune activities of the five histological types and provide treatment strategies. This study reviewed the histological findings of 517 patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database and classified them into five types. We performed gene set enrichment analysis (GSEA) and survival analysis according to the different types. We found six oncogenic gene sets that were higher in lung adenocarcinoma than in normal tissues. In the survival analysis of each type, the acinar type had a favorable prognosis, and the solid subtype had an unfavorable prognosis; however, the survival differences between the other types were not significant. Our study focused on the solid type, which had the poorest prognosis. The solid type was related to adaptive immune resistance associated with elevated CD8 T cells and high CD274 (encoding PD-L1) expression. In the pathway analyses, the solid type was significantly related to high vascular endothelial growth factor (VEGF)-A expression, reflecting tumor angiogenesis. Non-necrosis/low immune response affected by high VEGF-A was associated with worse prognosis. The solid type associated with high VEGF-A expression may contribute to the development of therapeutic strategies for lung adenocarcinoma.


2021 ◽  
Vol 22 (14) ◽  
pp. 7374
Author(s):  
Changwu Wu ◽  
Yingjuan Duan ◽  
Siming Gong ◽  
Sonja Kallendrusch ◽  
Nikolas Schopow ◽  
...  

Regulator of Chromatin Condensation 1 (RCC1) is the only known guanine nucleotide exchange factor that acts on the Ras-like G protein Ran and plays a key role in cell cycle regulation. Although there is growing evidence to support the relationship between RCC1 and cancer, detailed pancancer analyses have not yet been performed. In this genome database study, based on The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases, the potential role of RCC1 in 33 tumors’ entities was explored. The results show that RCC1 is highly expressed in most human malignant neoplasms in contrast to healthy tissues. RCC1 expression is closely related to the prognosis of a broad variety of tumor patients. Enrichment analysis showed that some tumor-related pathways such as “cell cycle” and “RNA transport” were involved in the functional mechanism of RCC1. In particular, the conducted analysis reveals the relation of RCC1 to multiple immune checkpoint genes and suggests that the regulation of RCC1 is closely related to tumor infiltration of cancer-associated fibroblasts and CD8+ T cells. Coherent data demonstrate the association of RCC1 with the tumor mutation burden and microsatellite instability in various tumors. These findings provide new insights into the role of RCC1 in oncogenesis and tumor immunology in various tumors and indicate its potential as marker for therapy prognosis and targeted treatment strategies.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fabio Morandi ◽  
Francesco Frassoni ◽  
Mirco Ponzoni ◽  
Chiara Brignole

Neuroblastoma (NB) and malignant melanoma (MM), tumors of pediatric age and adulthood, respectively, share a common origin, both of them deriving from the neural crest cells. Although NB and MM have a different behavior, in respect to age of onset, primary tissue involvement and metastatic spread, the prognosis for high stage-affected patients is still poor, in spite of aggressive treatment strategies and the huge amount of new discovered biological knowledge. For these reasons researchers are continuously attempting to find out new treatment options, which in a near future could be translated to the clinical practice. In the last two decades, a strong effort has been spent in the field of translational research of immunotherapy which led to satisfactory results. Indeed, several immunotherapeutic clinical trials have been performed and some of them also resulted beneficial. Here, we summarize preclinical studies based on immunotherapeutic approaches applied in models of both NB and MM.


Sarcoma ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Alexander B. Mohseny ◽  
Pancras C. W. Hogendoorn ◽  
Anne-Marie Cleton-Jansen

High-grade osteosarcoma is an aggressive tumor most commonly affecting adolescents. The early age of onset might suggest genetic predisposition; however, the vast majority of the tumors are sporadic. Early onset, most often lack of a predisposing condition or lesion, only infrequent (<2%) prevalence of inheritance, extensive genomic instability, and a wide histological heterogeneity are just few factors to mention that make osteosarcoma difficult to study. Therefore, it is sensible to design and use models representative of the human disease. Here we summarize multiple osteosarcoma models establishedin vitroandin vivo, comment on their utilities, and highlight newest achievements, such as the use of zebrafish embryos. We conclude that to gain a better understanding of osteosarcoma, simplification of this extremely complex tumor is needed. Therefore, we parse the osteosarcoma problem into parts and propose adequate models to study them each separately. A better understanding of osteosarcoma provides opportunities for discovering and assaying novel effective treatment strategies.


2021 ◽  
Author(s):  
Pingfan Wu ◽  
Xiaowen Zhao ◽  
Ling Xue ◽  
Xiaojing Yang ◽  
Yuxiang Shi ◽  
...  

Abstract Considerable evidence suggests that N6-methyladenosine (m6A) is involved in the regulation of long non-coding RNA (lncRNA), whichparticipates in the occurrence, development and prognosis of tumorscancerBut the relationship between m6A regulators-related lncRNA (mRlncRNA) and lung adenocarcinoma (LUAD) remains unclear. This study aims to determine a feature based on mRlncRNA for prognostic evaluation of LUAD patients. By integrating the gene expression data of LUAD and normal samples from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, the m6A gene and mRlncRNA with imbalanced expression were screened out. Then we used the least absolute shrinkage and selection operator (LASSO) to obtain the 13-lncRNA prognostic signature in the TCGA training cohort. Patients were divided into two risk groups based on the risk score of lncRNAs characteristics, and their overall survival (OS) was significantly different. The predictive power of this signature was verified in TCGA testing cohort and entire TCGA cohort. These landmark lncRNAs were involved in several biologiocal processes and pathways related to cell cycle, DNA replication, P53 signaling pathway and mismatch repair. Besides, the high-risk group was low-response to cisplatin, while high-response to mitomycin, docetaxel and immunotherapy. In conclusion, we identified a 13-mRlncRNA model associated with prognosis and treatment sensitivity in LUAD, which may provide clues about the influence of m6A on lncRNA in LUAD and promote the further improvement of LUAD individualized treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document