scholarly journals Variant profiling of colorectal adenomas from three patients of two families with MSH3-related adenomatous polyposis

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259185
Author(s):  
Claudia Perne ◽  
Sophia Peters ◽  
Maria Cartolano ◽  
Sukanya Horpaopan ◽  
Christina Grimm ◽  
...  

The spectrum of somatic genetic variation in colorectal adenomas caused by biallelic pathogenic germline variants in the MSH3 gene, was comprehensively analysed to characterise mutational signatures and identify potential driver genes and pathways of MSH3-related tumourigenesis. Three patients from two families with MSH3-associated polyposis were included. Whole exome sequencing of nine adenomas and matched normal tissue was performed. The amount of somatic variants in the MSH3-deficient adenomas and the pattern of single nucleotide variants (SNVs) was similar to sporadic adenomas, whereas the fraction of small insertions/deletions (indels) (21–42% of all small variants) was significantly higher. Interestingly, pathogenic somatic APC variants were found in all but one adenoma. The vast majority (12/13) of these were di-, tetra-, or penta-base pair (bp) deletions. The fraction of APC indels was significantly higher than that reported in patients with familial adenomatous polyposis (FAP) (p < 0.01) or in sporadic adenomas (p < 0.0001). In MSH3-deficient adenomas, the occurrence of APC indels in a repetitive sequence context was significantly higher than in FAP patients (p < 0.01). In addition, the MSH3-deficient adenomas harboured one to five (recurrent) somatic variants in 13 established or candidate driver genes for early colorectal carcinogenesis, including ACVR2A and ARID genes. Our data suggest that MSH3-related colorectal carcinogenesis seems to follow the classical APC-driven pathway. In line with the specific function of MSH3 in the mismatch repair (MMR) system, we identified a characteristic APC mutational pattern in MSH3-deficient adenomas, and confirmed further driver genes for colorectal tumourigenesis.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Youngil Koh ◽  
Daeyoon Kim ◽  
Woo-June Jung ◽  
Kwang-Sung Ahn ◽  
Sung-Soo Yoon

Background.Previously we established two cell lines (SNU_MM1393_BM and SNU_MM1393_SC) from different tissues (bone marrow and subcutis) of mice which were injected with single patient’s myeloma sample. We tried to define genetic changes specific for each cell line using whole exome sequencing (WES).Materials and Methods.We extracted DNA from SNU_MM1393_BM and SNU_MM1393_SC and performed WES. For single nucleotide variants (SNV) calling, we used Varscan2. Annotation of mutation was performed using ANNOVAR.Results.When calling of somatic mutations was performed, 68 genes were nonsynonymously mutated only in SNU_MM1393_SC, while 136 genes were nonsynonymously mutated only in SNU_MM1393_BM.KIAA1199, FRY, AP3B2,andOPTCwere representative genes specifically mutated in SNU_MM1393_SC. When comparison analysis was performed using TCGA data, mutational pattern of SNU_MM1393_SC resembled that of melanoma mostly. Pathway analysis using KEGG database showed that mutated genes specific of SNU_MM1393_BM were related to differentiation, while those of SNU_MM1393_SC were related to tumorigenesis.Conclusion.We found out genetic changes that underlie tropism of myeloma cells using WES. Genetic signature of cutaneous plasmacytoma shares that of melanoma implying common mechanism for skin tropism.KIAA1199, FRY, AP3B2,andOPTCare candidate genes for skin tropism of cancers.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Fatao Liu ◽  
Yongsheng Li ◽  
Dongjian Ying ◽  
Shimei Qiu ◽  
Yong He ◽  
...  

AbstractNeuroendocrine carcinoma (NEC) of the gallbladder (GB-NEC) is a rare but extremely malignant subtype of gallbladder cancer (GBC). The genetic and molecular signatures of GB-NEC are poorly understood; thus, molecular targeting is currently unavailable. In the present study, we applied whole-exome sequencing (WES) technology to detect gene mutations and predicted somatic single-nucleotide variants (SNVs) in 15 cases of GB-NEC and 22 cases of general GBC. In 15 GB-NECs, the C > T mutation was predominant among the 6 types of SNVs. TP53 showed the highest mutation frequency (73%, 11/15). Compared with neuroendocrine carcinomas of other organs, significantly mutated genes (SMGs) in GB-NECs were more similar to those in pulmonary large-cell neuroendocrine carcinomas (LCNECs), with driver roles for TP53 and RB1. In the COSMIC database of cancer-related genes, 211 genes were mutated. Strikingly, RB1 (4/15, 27%) and NAB2 (3/15, 20%) mutations were found specifically in GB-NECs; in contrast, mutations in 29 genes, including ERBB2 and ERBB3, were identified exclusively in GBC. Mutations in RB1 and NAB2 were significantly related to downregulation of the RB1 and NAB2 proteins, respectively, according to immunohistochemical (IHC) data (p values = 0.0453 and 0.0303). Clinically actionable genes indicated 23 mutated genes, including ALK, BRCA1, and BRCA2. In addition, potential somatic SNVs predicted by ISOWN and SomVarIUS constituted 6 primary COSMIC mutation signatures (1, 3, 30, 6, 7, and 13) in GB-NEC. Genes carrying somatic SNVs were enriched mainly in oncogenic signaling pathways involving the Notch, WNT, Hippo, and RTK-RAS pathways. In summary, we have systematically identified the mutation landscape of GB-NEC, and these findings may provide mechanistic insights into the specific pathogenesis of this deadly disease.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Min Chen ◽  
Min Zhang ◽  
Yeqing Qian ◽  
Yanmei Yang ◽  
Yixi Sun ◽  
...  

Abstract Recent advances in Bionano optical mapping (BOM) provide a great insight into the determination of structural variants (SVs), but its utility in identification of clinical likely pathogenic variants needs to be further demonstrated and proved. In a family with two consecutive pregnancies affected with ventriculomegaly, a splicing likely pathogenic variant at the LAMA1 locus (NM_005559: c. 4663 + 1 G > C) inherited from the father was identified in the proband by whole-exome sequencing, and no other pathogenic variant associated with the clinical phenotypes was detected. SV analysis by BOM revealed an ~48 kb duplication at the LAMA1 locus in the maternal sample. Real-time quantitative PCR and Sanger sequencing further confirmed the duplication as c.859-153_4806 + 910dup. Based on these variants, we hypothesize that the fetuses have Poretti-Boltshauser syndrome (PBS) presenting with ventriculomegaly. With the ability to determine single nucleotide variants and SVs, the strategy adopted here might be useful to detect cases missed by current routine screening methods. In addition, our study may broaden the phenotypic spectrum of fetuses with PBS.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 228-228
Author(s):  
Joachim Kunz ◽  
Tobias Rausch ◽  
Obul R Bandapalli ◽  
Martina U. Muckenthaler ◽  
Adrian M Stuetz ◽  
...  

Abstract Acute precursor T-lymphoblastic leukemia (T-ALL) remains a serious challenge in pediatric oncology, because relapses carry a particularly poor prognosis with high rates of induction failure and death despite generally excellent treatment responses of the initial disease. It is critical, therefore, to understand the molecular evolution of pediatric T-ALL and to elucidate the mechanisms leading to T-ALL relapse and to understand the differences in treatment response between the two phases of the disease. We have thus subjected DNA from bone marrow samples obtained at the time of initial diagnosis, remission and relapse of 14 patients to whole exome sequencing (WES). Eleven patients suffered from early relapse (duration of remission 6-19 months) and 3 patients from late relapse (duration of remission 29-46 months).The Agilent SureSelect Target Enrichment Kit was used to capture human exons for deep sequencing. The captured fragments were sequenced as 100 bp paired reads using an Illumina HiSeq2000 sequencing instrument. All sequenced DNA reads were preprocessed using Trimmomatic (Lohse et al., Nucl. Acids Res., 2012) to clip adapter contaminations and to trim reads for low quality bases. The remaining reads greater than 36bp were mapped to build hg19 of the human reference genome with Stampy (Lunter & Goodson, Genome Res. 2011), using default parameters. Following such preprocessing, the number of mapped reads was >95% for all samples. Single-nucleotide variants (SNVs) were called using SAMtools mpileup (Li et al., Bioinformatics, 2009). The number of exonic SNVs varied between 23,741 and 31,418 per sample. To facilitate a fast classification and identification of candidate driver mutations, all identified coding SNVs were comprehensively annotated using the ANNOVAR framework (Wang et al., Nat. Rev. Genet., 2010). To identify possible somatic driver mutations, candidate SNVs were filtered for non-synonymous, stopgain or stoploss SNVs, requiring an SNV quality greater or equal to 50, and requiring absence of segmental duplications. Leukemia-specific mutations were identified by filtering against the corresponding remission sample and validated by Sanger sequencing of the genomic DNA following PCR amplification. We identified on average 9.3 somatic single nucleotide variants (SNV) and 0.6 insertions and deletions (indels) per patient sample at the time of initial diagnosis and 21.7 SNVs and 0.3 indels in relapse. On average, 6.3 SNVs were detected both at the time of initial diagnosis and in relapse. These SNVs were thus defined as leukemia specific. Further to SNVs, we have also estimated the frequency of copy number variations (CNV) at low resolution. Apart from the deletions resulting from T-cell receptor rearrangement, we identified on average for each patient 0.7 copy number gains and 2.2 copy number losses at the time of initial diagnosis and 0.5 copy number gains and 2.4 copy number losses in relapse. We detected 24/27 copy number alterations both in initial diagnosis and in relapse. The most common CNV detected was the CDKN2A/B deletion on chromosome 9p. Nine genes were recurrently mutated in 2 or more patients thus indicating the functional leukemogenic potential of these SNVs in T-ALL. These recurrent mutations included known oncogenes (Notch1), tumor suppressor genes (FBXW7, PHF6, WT1) and genes conferring drug resistance (NT5C2). In several patients one gene (such as Notch 1, PHF6, WT1) carried different mutations either at the time of initial diagnosis and or in relapse, indicating that the major leukemic clone had been eradicated by primary treatment, but that a minor clone had persisted and expanded during relapse. The types of mutations did not differ significantly between mutations that were either already present at diagnosis or those that were newly acquired in relapse, indicating that the treatment did not cause specific genomic damage. We will further characterize the clonal evolution of T-ALL into relapse by targeted re-sequencing at high depth of genes with either relapse specific or initial-disease specific mutations. In conclusion, T-ALL relapse differs from primary disease by a higher number of leukemogenic SNVs without gross genomic instability resulting in large CNVs. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Athar Khalil ◽  
Samer Bou Karroum ◽  
Rana Barake ◽  
Gabriel Dunya ◽  
Samer Abou-Rizk ◽  
...  

Abstract Background Hearing loss (HL) represents the most common congenital sensory impairment with an incidence of 1-5 per 1000 live births. Non-syndromic hearing loss (NSHL) is an isolated finding that is not part of any other disorder accounting for 70% of all genetic hearing loss cases. Methods In the current study, we report a multifactorial genetic mode of inheritance in a NSHL consanguineous family using exome sequencing technology. We evaluated the possible effects of the single nucleotide variants (SNVs) detected in our patients using in silico methods. Results Two bi-allelic SNVs were detected in the affected patients; a MYO15A (. p.V485A) variant, and a novel MITF (p.P338L) variant. Along with these homozygous mutations, we detected two heterozygous variants in well described hearing loss genes (MYO7A and MYH14). The novel p. Pro338Leu missense mutation on the MITF protein was predicted to change the protein structure and function. Conclusion The novel MITF variant is the first bi-allelic SNV in this gene to be associated with an autosomal recessive non-syndromic HL case with a post-lingual onset. Our findings highlight the importance of whole exome sequencing for a comprehensive assessment of the genetic heterogeneity of HL.


2021 ◽  
Vol 17 (1) ◽  
pp. 29-37
Author(s):  
E. S. Striukova ◽  
E. V. Shakhtshneider ◽  
D. E. Ivanoshchuk ◽  
Yu. I. Ragino ◽  
Ya. V. Polonskaya ◽  
...  

Factor V, encoded by the F5 gene, is a procoagulant blood clotting factor that increases the production of thrombin, the central enzyme that converts fibrinogen to fibrin, which leads to the formation of a blood clot. The F5 gene is localized to 1q24.2 chromosome and consists of 25 exons. There are various mutations in the F5 gene that lead to resistance of activated protein C (APC) (elimination of the APС cleavage site in factor V and factor Va), which can lead to arterial and venous thrombosis. The aim of the present study was to analyze variants of the F5 gene in patients diagnosed with coronary atherosclerosis without acute coronary syndrome with stable functional class II–IV angina pectoris, confirmed by coronary angiography data, using the method of whole exome sequencing.Material and methods. The study was conducted in the framework of the Program of joint research work IIPM — branch of the ICG SB RAS and the FSBI «Research Institute of Circulation Pathology named after E.N. Meshalkin» Ministry of Health of Russian Federation. The study included 30 men aged 40–70 years with coronary angiography-­verified coronary atherosclerosis, without ACS, with stable angina pectoris of the II–IV FC. Patients were admitted for coronary bypass surgery, and endarteriaectomy from the coronary artery (s) was performed during the operation according to intraoperative indications. Whole exome sequencing (SureSelectXT Human All Exon v.6+UTR) was carried out on an Illumina NextSeq 500 instrument (USA).Results. In 30 patients, 29 single-­nucleotide variants were found in the F5 gene. In patients with coronary atherosclerosis, rs9332701 of the F5 gene is 3.33 times more common, and rs6027 is 1.67 times more common than in the population. And rs184663825 was found in 3.33% of cases, while its occurrence in the population is 0.05%. For variants rs6034 and rs144979314, a possible damaging effect on the protein product is shown.Conclusion. The single-­nucleotide variants rs9332701, rs6027, rs184663825, rs6034, rs144979314 of the F5 gene are of interest for inclusion in the genetic panels for the analysis of risk factors for the development of acute coronary syndrome.


2018 ◽  
pp. bcr-2018-225568
Author(s):  
Anders Valind ◽  
Ingrid Öra ◽  
Fredrik Mertens ◽  
David Gisselsson

Neuroblastoma is one of the most common paediatric malignancies. Detection of somatic genetic alterations in this tumour is instrumental for its risk stratification and treatment. On the other hand, an absence of detected chromosomal imbalances in neuroblastoma biopsies is difficult to interpret because it is unclear whether this situation truly reflects the tumour genome or if it is due to suboptimal sampling. We here present a neuroblastoma in the left adrenal of a newborn. The tumour was subjected to single-nucleotide polymorphism array analysis of five tumour regions with >80% tumour cells in histological mirror sections. This revealed no aberrations compared with a normal reference sample from the patient. Whole exome sequencing identified two single-nucleotide variants present in most tumour regions, corroborating that the tumour resulted from monoclonal expansion. Our data provide proof-of-principle that rare cases of neuroblastoma can have a normal whole genome copy number and allelic profile.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e12122-e12122 ◽  
Author(s):  
Andrea Li Ann Wong ◽  
Kar Tong Tan ◽  
Raghav Sundar ◽  
Samuel Ow ◽  
Angela Pang ◽  
...  

e12122 Background: We assessed effects of NACT on BC mutational landscape. Methods: Baseline (BL) and post-NACT tumor / matched normal DNA from 12 newly diagnosed BC patients on NACT (4 x doxorubicin/cyclophosphamide + low dose sunitinib; NCT01176799) were subject to whole exome sequencing. Nonsynonymous somatic single nucleotide variants from 34 genes in known BC signaling pathways were evaluated for changes in mutant variant allele frequency (VAF) according to clinical outcome. Poor outcome was defined as <50% target lesion reduction after NACT or BC relapse / progression (PD) within 2 years; significant change was defined as > 0.2 difference in BL vs post-NACT mutant VAF. Results: Mean tumor size was 6.4 + 2.9cm; 50% were N+; 8% were M1; 7/12 patients had poor outcomes. Tumors harbored mutations in PI3K (58%), NOTCH (42%), Wnt (42%), TP53 (33%) and FOXA (17%) pathways. Change in no. of somatic mutations post-NACT correlated with outcome (mean percent change +14% vs -30% in patients with poor vs good outcome, p=0.04). 11 patients had >1 of 23 putative driver mutations identified ( Table 1). Mutant VAF declined significantly in those with good outcomes, except for a new NOTCH2 mutation in A2 and rise in mutant VAF in A4. In patients with poor outcomes, mutant VAF persisted or rose, and emergent mutations (AKT1, PIK3CA) occurred in 2 patients. Conclusions: Chemoresistance and emergent mutations were revealed by tracking mutant VAF in BC patients on NACT. Clinical trial information: NCT01176799. [Table: see text]


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8841
Author(s):  
Yongbo Yang ◽  
Jian Wang ◽  
Qun Liang ◽  
Yi Wang ◽  
Xinhua Chen ◽  
...  

Moyamoya disease (MMD) is a progressive stenosis at the terminal portion of internal carotid artery and frequently occurs in East Asian countries. The etiology of MMD is still largely unknown. We performed a case-control design with whole-exome sequencing analysis on 31 sporadic MMD patients and 10 normal controls with matched age and gender. Patients clinically diagnosed with MMD was determined by digital subtraction angiography (DSA). Twelve predisposing mutations on seven genes associated with the sporadic MMD patients of Chinese ancestry (CCER2, HLA-DRB1, NSD-1, PDGFRB, PHACTR1, POGLUT1, and RNF213) were identified, of which eight single nucleotide variants (SNVs) were deleterious with CADD PHRED scaled score > 15. Sanger sequencing of nine cases with disease progression and 22 stable MMD cases validated that SNV (c.13185159G>T, p.V265L) on PHACTR1 was highly associated with the disease progression of MMD. Finally, we knocked down the expression of PHACTR1 by transfection with siRNA and measured the cell survival of human coronary artery endothelial cell (HCAEC) cells. PHACTR1 silence reduced the cell survival of HCAEC cells under serum starvation cultural condition. Together, these data identify novel predisposing mutations associated with MMD and reveal a requirement for PHACTR1 in mediating cell survival of endothelial cells.


2014 ◽  
Author(s):  
Julian S. Gehring ◽  
Bernd Fischer ◽  
Michael Lawrence ◽  
Wolfgang Huber

Mutational signatures are patterns in the occurrence of somatic single nucleotide variants (SNVs) that can reflect underlying mutational processes. The SomaticSignatures package provides flexible, interoperable, and easy-to-use tools that identify such signatures in cancer sequencing data. It facilitates large-scale, cross-dataset estimation of mutational signatures, implements existing methods for pattern decomposition, supports extension through user-defined methods and integrates with Bioconductor workflows. The R package SomaticSignatures is available as part of the Bioconductor project (R Core Team, 2014; Gentleman et al., 2004). Its documentation provides additional details on the methodology and demonstrates applications to biological datasets.


Sign in / Sign up

Export Citation Format

Share Document